
TadGAN: Time Series Anomaly Detection Using
Generative Adversarial Networks

Alexander Geiger*

MIT
Cambridge, USA
geigera@mit.edu

Dongyu Liu*

MIT
Cambridge, USA
dongyu@mit.edu

Sarah Alnegheimish
MIT

Cambridge, USA
smish@mit.edu

Alfredo Cuesta-Infante
Universidad Rey Juan Carlos

Madrid, Spain
alfredo.cuesta@urjc.es

Kalyan Veeramachaneni
MIT

Cambridge, USA
kalyanv@mit.edu

Abstract—Time series anomalies can offer information relevant
to critical situations facing various fields, from finance and
aerospace to the IT, security, and medical domains. However,
detecting anomalies in time series data is particularly challeng-
ing due to the vague definition of anomalies and said data’s
frequent lack of labels and highly complex temporal correlations.
Current state-of-the-art unsupervised machine learning methods
for anomaly detection suffer from scalability and portability
issues, and may have high false positive rates. In this paper, we
propose TadGAN, an unsupervised anomaly detection approach
built on Generative Adversarial Networks (GANs). To capture the
temporal correlations of time series distributions, we use LSTM
Recurrent Neural Networks as base models for Generators and
Critics. TadGAN is trained with cycle consistency loss to allow
for effective time-series data reconstruction. We further propose
several novel methods to compute reconstruction errors, as well
as different approaches to combine reconstruction errors and
Critic outputs to compute anomaly scores. To demonstrate the
performance and generalizability of our approach, we test several
anomaly scoring techniques and report the best-suited one. We
compare our approach to 8 baseline anomaly detection methods
on 11 datasets from multiple reputable sources such as NASA,
Yahoo, Numenta, Amazon, and Twitter. The results show that
our approach can effectively detect anomalies and outperform
baseline methods in most cases (6 out of 11). Notably, our method
has the highest averaged F1 score across all the datasets. Our
code is open source and is available as a benchmarking tool.

Index Terms—Anomaly detection, Generative adversarial net-
work, Time series data

I. INTRODUCTION

The recent proliferation of temporal observation data has
led to an increasing demand for time series anomaly detection
in many domains, from energy and finance to healthcare and
cloud computing. A time series anomaly is defined as a time
point or period where a system behaves unusually [1]. Broadly
speaking, there are two types of anomalies: A point anomaly is
a single data point that has reached an unusual value, while a

* The two authors make equal contributions to this work. D. Liu and K.
Veeramachaneni are the co-corresponding authors. Copyright: 978-1-7281-
6251-5/20/$31.00 ©2020 IEEE

Outperforms
Deep learning based method ARIMA, 1970 [4]

LSTM AutoEncoder, 2016 [5] 5
LSTM, 2018 [6] 5

MAD-GAN, 2019 [7] 0
MS Azure, 2019 [8] 0

DeepAR, 2019 [9] 6
TadGAN 8

TABLE I
THE NUMBER OF WINS OF A PARTICULAR METHOD COMPARED WITH

ARIMA, THE TRADITIONAL TIME SERIES FORECASTING MODEL,
AGAINST AN APPROPRIATE METRIC (F1 SCORE) ON 11 REAL DATASETS.

collective anomaly is a continuous sequence of data points that
are considered anomalous as a whole, even if the individual
data points may not be unusual [1].

Time series anomaly detection aims to isolate anomalous
subsequences of varied lengths within time series. One of the
simplest detection techniques is thresholding, which detects
data points that exceed a normal range. However, many
anomalies do not exceed any boundaries – for example, they
may have values that are purportedly “normal,” but are unusual
at the specific time that they occur (i.e., contextual anomalies).
These anomalies are harder to identify because the context of
a signal is often unclear [1], [2].

Various statistical methods have been proposed to im-
prove upon thresholding, such as Statistical Process Control
(SPC) [3], in which data points are identified as anomalies
if they fail to pass statistical hypothesis testing. However, a
large amount of human knowledge is still required to set prior
assumptions on the models.

Researchers have also studied a number of unsupervised
machine learning-based approaches to anomaly detection. One
popular method consists of segmenting a time series into sub-
sequences (overlapping or otherwise) of a certain length and
applying clustering algorithms to find outliers. Another learns

ar
X

iv
:2

00
9.

07
76

9v
3

 [c
s.L

G
]

14
 N

ov
 2

02
0

Anomalies tstart tstop

1
2

18

...

Jan 10th, 2019 - 8:16 am Jan 10th, 2019 - 3:34 pmUnsupervised
ML

Model
Jan 16th, 2019 - 11:16 am Jan 17th, 2019 - 2:34 am

... ...

Mar 24th, 2019 - 2:12 pm Mar 28th, 2019 - 3:19 pm

Fig. 1. An illustration of time series anomaly detection using unsupervised learning. Given a multivariate time series, the goal is to find out a set of anomalous
time segments that have unusual values and do not follow the expected temporal patterns.

a model that either predicts or reconstructs a time series signal,
and makes a comparison between the real and the predicted or
reconstructed values. High prediction or reconstruction errors
suggest the presence of anomalies.

Deep learning methods [10] are extremely capable of han-
dling non-linearity in complex temporal correlations, and have
excellent learning ability. For this reason, they have been
used in a number of time series anomaly detection methods
[6], [11], [12], including tools created by companies such as
Microsoft [8]. Generative Adversarial Networks (GANs) [13]
have also been shown to be very successful at generat-
ing time series sequences and outperforming state-of-the-art
benchmarks [14]. Such a proliferation of methods invites the
question: Do these new, complex approaches actually perform
better than a simple baseline statistical method? To evaluate
the new methods, we used 11 datasets (real and synthetic)
that collectively have 492 signals and thousands of known
anomalies to set-up a benchmarking system (see the details
in Section VI and Table IV). We implemented 5 of the most
recent deep learning techniques introduced between 2016 and
2019, and compared their performances with that of a baseline
method from the 1970s, ARIMA. While some methods were
able to beat ARIMA on 50% of the datasets, two methods
failed to outperform it at all (c.f. Table I).

One of the foundational challenges of deep learning-based
approaches is that their remarkable ability to fit data carries the
risk that they could fit anomalous data as well. For example,
autoencoders, using L2 objective function, can fit and recon-
struct data extremely accurately - thus fitting the anomalies as
well. On the other hand, GANs may be ineffective at learning
the generator to fully capture the data’s hidden distribution,
thus causing false alarms. Here, we mix the two methods,
creating a more nuanced approach. Additionally, works in
this domain frequently emphasize improving the deep learning
model itself. However, as we show in this paper, improving
post-processing steps could aid significantly in reducing the
number of false positives.

In this work, we introduce a novel GAN architecture,
TadGAN, for the time series domain. We use TadGAN to
reconstruct time series and assess errors in a contextual manner
to identify anomalies. We explore different ways to compute
anomaly scores based on the outputs from Generators and
Critics. We benchmark our method against several well-known
classical- and deep learning-based methods on eleven time
series datasets. The detailed results can be found in Table IV.

The key contributions of this paper are as follows:
• We propose a novel unsupervised GAN-reconstruction-

based anomaly detection method for time series data. In
particular, we introduce a cycle-consistent GAN architec-
ture for time-series-to-time-series mapping.

• We identify two time series similarity measures suitable
for evaluating the contextual similarity between original
and GAN-reconstructed sequences. Our novel approach
leverages GAN’s Generator and Critic to compute robust
anomaly scores at every time step.

• We conduct an extensive evaluation using 11 time-series
datasets from 3 reputable entities (NASA, Yahoo, and
Numenta), demonstrating that our approach outperforms
8 other baselines. We further provide several insights into
anomaly detection for time series data using GANs.

• We develop a benchmarking system for time series
anomaly detection. The system is open-sourced and can
be extended with additional approaches and datasets1.
At the time of this writing, the benchmark includes 9
anomaly detection pipelines, 13 datasets, and 2 evaluation
mechanisms.

The rest of this paper is structured as follows. We formally
lay out the problem of time series anomaly detection in
Section II. Section III presents an overview of the related
literature. Section IV introduces the details of our GAN model.
We describe how to use GANs for anomaly detection in Sec-
tion V, and evaluate our proposed framework in Section VI.
Finally, Section VII summarizes the paper and reports our key
findings.

II. UNSUPERVISED TIME SERIES ANOMALY DETECTION

Given a time series X = (x1, x2, · · · , xT), where xi 2
RM⇥1 indicates M types of measurements at time step
i, the goal of unsupervised time series anomaly detection
is to find a set of anomalous time segments Aseq =
{a1

seq,a
2
seq, · · · ,ak

seq}, where ai
seq is a continuous sequence

of data points in time that show anomalous or unusual behav-
iors (Figure 1) – values within the segment that appear not
to comply with the expected temporal behavior of the signal.
A few aspects of this problem make it both distinct from and
more difficult than time series classification [15] or supervised
time series anomaly detection [16], as well as more pertinent
to many industrial applications. We highlight them here:

1The software is available at github (https://github.com/signals-dev/Orion)

ENCODERDECODED A D

Sa

www.YMIYTMEEI.TT

https://github.com/signals-dev/Orion

– No a priori knowledge of anomalies or possible anoma-
lies: Unlike with supervised time series anomaly detec-
tion, we do not have any previously identified “known
anomalies” with which to train and optimize the model.
Rather, we train the model to to learn the time series pat-
terns, ask it to detect anomalies, and then check whether
the detector identified anything relevant to end users.

– Non availability of “normal baselines” : For many real-
world systems, such as wind turbines and aircraft engines,
simulation engines can produce a signal that resembles
normal conditions, which can be tweaked for different
control regimes or to account for degradation or aging.
Such simulation engines are often physics-based and
provide “normal baselines,” which can be used to train
models such that any deviations from them are considered
anomalous. Unsupervised time series anomaly detection
strategies do not rely on the availability of such baselines,
instead learning time series patterns from real-world
signals – signals that may themselves include anomalies
or problematic patterns.

– Not all detected anomalies are problematic: Detected
“anomalies” may not actually indicate problems, and
could instead result from external phenomena (such as
sudden shifts in environmental conditions), auxiliary in-
formation (such as the fact that a test run is being
performed), or other variables that the algorithm did
not consider, such as regime or control setting changes.
Ultimately, it is up to the end user, the domain expert, to
assess whether the anomalies identified by the model are
problematic. Figure 1 highlights how a trained unsuper-
vised machine learning model can be used in real time
for the incoming data.

– No clear segmentation possible: Many signals, such as
those associated with periodic time series, can be seg-
mented – for example, an electrocardiogram signal (ECG)
can be separated into similar segments that pertain to
periods [16], [17]. The resulting segment clusters may
reveal different collective patterns, along with anomalous
patterns. We focus on signals that cannot be clearly seg-
mented, making these approaches unfeasible. The length
of ai is also variable and is not known a priori, which
further increases the difficulty.

– How do we evaluate these competing approaches? For
this, we rely on several datasets that contain “known
anomalies”, the details of which are introduced in Sec-
tion VI-A. Presumably, the “anomalies” are time seg-
ments that have been manually identified as such by
some combination of algorithmic approaches and human
expert annotation. These “anomalies” are used to evaluate
the efficacy of our proposed unsupervised models. More
details about this can be found in Section VI-B3.

III. RELATED WORK

Over the past several years, the rich variety of anomaly
types, data types and application scenarios has spurred a
range of anomaly detection approaches [1], [18]–[20]. In this

section, we discuss some of the unsupervised approaches.
The simplest of these are out-of-limit methods, which flag
regions where values exceed a certain threshold [21], [22].
While these methods are intuitive, they are inflexible and
incapable of detecting contextual anomalies. To overcome
this, more advanced techniques have been proposed, namely
proximity-based, prediction-based, and reconstruction-based
anomaly detection (Table II).

Methodology Papers

Proximity [23]–[25]
Prediction [2], [6], [26], [27]

Reconstruction [5], [28]–[30]
Reconstruction (GANs) [7], [14], [31]

TABLE II
UNSUPERVISED APPROACHES TO TIME SERIES ANOMALY DETECTION.

A. Anomaly Detection for Time Series Data.
Proximity-based methods first use a distance measure to

quantify similarities between objects – single data points for
point anomalies, or fixed length sequences of data points
for collective anomalies. Objects that are distant from others
are considered anomalies. This detection type can be fur-
ther divided into distance-based methods, such as K-Nearest
Neighbor (KNN) [24] – which use a given radius to define
neighbors of an object, and the number of neighbors to
determine an anomaly score – and density-based methods,
such as Local Outlier Factor (LOF) [23] and Clustering-Based
Local Outlier Factor [25], which further consider the density
of an object and that of its neighbors. There are two major
drawbacks to applying proximity-based methods in time series
data: (1) a priori knowledge about anomaly duration and the
number of anomalies is required; (2) these methods are unable
to capture temporal correlations.

Prediction-based methods learn a predictive model to fit
the given time series data, and then use that model to predict
future values. A data point is identified as an anomaly if
the difference between its predicted input and the original
input exceeds a certain threshold. Statistical models, such as
ARIMA [26], Holt-Winters [26], and FDA [27], can serve this
purpose, but are sensitive to parameter selection, and often
require strong assumptions and extensive domain knowledge
about the data. Machine learning-based approaches attempt to
overcome these limitations. [2] introduce Hierarchical Tempo-
ral Memory (HTM), an unsupervised online sequence memory
algorithm, to detect anomalies in streaming data. HTM en-
codes the current input to a hidden state and predicts the next
hidden state. A prediction error is measured by computing the
difference between the current hidden state and the predicted
hidden state. Hundman et al. [6] propose Long Short Term
Recurrent Neural Networks (LSTM RNNs), to predict future
time steps and flag large deviations from predictions.

Reconstruction-based methods learn a model to capture
the latent structure (low-dimensional representations) of the

given time series data and then create a synthetic recon-
struction of the data. Reconstruction-based methods assume
that anomalies lose information when they are mapped to a
lower dimensional space and thereby cannot be effectively
reconstructed; thus, high reconstruction errors suggest a high
chance of being anomalous.

Principal Component Analysis (PCA) [28], a
dimensionality-reduction technique, can be used to reconstruct
data, but this is limited to linear reconstruction and requires
data to be highly correlated and to follow a Gaussian
distribution [29]. More recently, deep learning based
techniques have been investigated, including those that
use Auto-Encoder (AE) [30], Variational Auto-Encoder
(VAE) [30] and LSTM Encoder-Decoder [5].

However, without proper regularization, these
reconstruction-based methods can easily become overfitted,
resulting in low performance. In this work, we propose
the use of adversarial learning to allow for time series
reconstruction. We introduce an intuitive approach for
regularizing reconstruction errors. The trained Generators can
be directly used to reconstruct more concise time series data
– thereby providing more accurate reconstruction errors –
while the Critics can offer scores as a powerful complement
to the reconstruction errors when computing an anomaly
score.

B. Anomaly Detection Using GANs.
Generative adversarial networks can successfully perform

many image-related tasks, including image generation [13],
image translation [32], and video prediction [33], and re-
searchers have recently demonstrated the effectiveness of
GANs for anomaly detection in images [34], [35].

Adversarial learning for images. Schlegl et al. [36] use
the Critic network in a GAN to detect anomalies in medical
images. They also attempt to use the reconstruction loss as
an additional anomaly detection method, and find the inverse
mapping from the data space to the latent space. This mapping
is done in a separate step, after the GAN is trained. How-
ever, Zenati et al. [37] indicate that this method has proven
impractical for large data sets or real-time applications. They
propose a bi-directional GAN for anomaly detection in tabular
and image data sets, which allows for simultaneous training
of the inverse mapping through an encoding network.

The idea of training both encoder and decoder networks was
developed by Donahue et al. [38] and Dumoulin et al. [39],
who show how to achieve bidirectional GANs by trying to
match joint distributions. In an optimal situation, the joint
distributions are the same, and the Encoder and Decoder
must be inverses of each other. A cycle-consistent GAN was
introduced by Zhu et al. [32], who have two networks try
to map into opposite dimensions, such that samples can be
mapped from one space to the other and vice versa.

Adversarial learning for time series. Prior GAN-related
work has rarely involved time series data, because the complex
temporal correlations within this type of data pose significant
challenges to generative modeling. Three works published in

2019 are of note. First, to use GANs for anomaly detection
in time series, Li et al. [7] propose using a vanilla GAN
model to capture the distribution of a multivariate time series,
and using the Critic to detect anomalies. Another approach in
this line is BeatGAN [31], which is a Encoder and Decoder
GAN architecture that allows for the use of the reconstruction
error for anomaly detection in heartbeat signals. More recently,
Yoon et al. [14] propose a time series GAN which adopts
the same idea but introduces temporal embeddings to assist
network training. However, their work is designed for time
series representation learning instead of anomaly detection.

To the best of our knowledge, we are the first to introduce
cycle-consistent GAN architectures for time series data, such
that Generators can be directly used for time series reconstruc-
tions. In addition, we systematically investigate how to utilize
Critic and Generator outputs for anomaly score computation.
A complete framework of time series anomaly detection is
introduced to work with GANs.

IV. ADVERSARIAL LEARNING FOR TIME SERIES
RECONSTRUCTION

The core idea behind reconstruction-based anomaly de-
tection methods is to learn a model that can encode a
data point (in our case, a segment of a time series) and
then decode the encoded one (i.e., reconstructed one). An
effective model should not be able to reconstruct anomalies
as well as “normal” instances, because anomalies will lose
information during encoding. In our model, we learn two
mapping functions between two domains X and Z, namely
E : X ! Z and G : Z ! X (Fig. 2). X denotes
the input data domain, describing the given training samples
{(x1...t

i)}Ni=1, x1...t
i 2 X . Z represents the latent domain,

where we sample random vectors z to represent white noise.
We follow a standard multivariate normal distribution, i.e.,
z ⇠ PZ = N (0, 1). For notational convenience we use xi

to denote a time sequence of length t starting at time step i.
With the mapping functions, we can reconstruct the input time
series: xi ! E(xi) ! G(E(xi)) ⇡ x̂i.

We propose leveraging adversarial learning approaches to
obtain the two mapping functions E and G. As illustrated in
Fig. 2, we view the two mapping functions as Generators.
Note that E is serving as an Encoder, which maps the time
series sequences into the latent space, while G is serving
as a Decoder, which transforms the latent space into the
reconstructed time series. We further introduce two adversarial
Critics (aka discriminators) Cx and Cz . The goal of Cx is to
distinguish between the real time series sequences from X
and the generated time series sequences from G(z), while Cz
measures the performance of the mapping into latent space. In
other words, G is trying to fool Cx by generating real-looking
sequences. Thus, our high-level objective consists of two
terms: (1) Wasserstein losses [40], to match the distribution
of generated time series sequences to the data distribution in
the target domain; and (2) cycle consistency losses [32], to
prevent the contradiction between E and G.

ENCODER DECODER

E X Z G Z x

A. Wasserstein Loss
The original formulation of GAN that applies the stan-

dard adversarial losses (Eq. 1) suffers from the mode
collapse problem.

L = Ex⇠PX [log Cx(x)] + Ez⇠PZ [log(1� Cx(G(z)))] (1)

where Cx produces a probability score from 0 to 1 indicating
the realness of the input time series sequence. To be specific,
the Generator tends to learn a small fraction of the variability
of the data, such that it cannot perfectly converge to the target
distribution. This is mainly because the Generator prefers to
produce those samples that have already been found to be
good at fooling the Critic, and is reluctant to produce new
ones, even though new ones might be helpful to capture other
“modes” in the data.

To overcome this limitation, we apply Wasserstein loss [40]
as the adversarial loss to train the GAN. We make use of
the Wasserstein-1 distance when training the Critic network.
Formally, let PX be the distribution over X . For the mapping
function G : Z ! X and its Critic Cx, we have the
following objective:

min
G

max
Cx2Cx

VX(Cx,G) (2)

with

VX(Cx,G) = Ex⇠PX [Cx(x)]� Ez⇠PZ [Cx(G(z)))] (3)

where Cx 2 Cx which denotes the set of 1-Lipschitz continu-
ous functions. K-Lipschitz continuous functions are defined as
follows: kf(x1) � f(x2)k  Kkx1 � x2k, 8x1, x2 2 domf .
The Lipschitz continuous functions constrain the upper bound
of the function, further smoothing the function. Therefore,
the weights will not change dramatically when updated with
gradient descent methods. This reduces the risk of gradient
explosion, and makes the model training more stable and
reliable. In addition, to enforce the 1-Lipschitz constraint
during training, we apply a gradient penalty regularization
term as introduced by Gulrajani et al. [41], which penalizes
gradients not equal to 1 (cf. line 5).

Following a similar approach, we introduce a Wasserstein
loss for the mapping function E : X ! Z and its Critic Cz .
The objective is expressed as:

min
E

max
Cz2Cz

VZ(Cz, E) (4)

The purpose of the second Critic Cz is to distinguish between
random latent samples z ⇠ PZ and encoded samples E(x)
with x ⇠ PX . We present the model type and architecture for
E , G, Cx, Cz in section VI-B.

B. Cycle Consistency Loss
The purpose of our GAN is to reconstruct the input time

series: xi ! E(xi) ! G(E(xi)) ⇡ x̂i. However, training the
GAN with adversarial losses (i.e., Wasserstein losses) alone
cannot guarantee mapping individual input xi to a desired
output zi which will be further mapped back to x̂i. To reduce
the possible mapping function search space, we adapt cycle

Cx

x ⇠ PX L2 G(E(x)) G(z)

E G

E(x) z ⇠ PZ

Cz

Fig. 2. Model architecture: Generator E is serving as an Encoder which
maps the time series sequences into the latent space, while Generator G is
serving as a Decoder that transforms the latent space into the reconstructed
time series. Critic Cx is to distinguish between real time series sequences
from X and the generated time series sequences from G(z), whereas Critic
Cz measures the goodness of the mapping into the latent space.

consistency loss to time series reconstruction, which was first
introduced by Zhu et al. [32] for image translation tasks. We
train the generative network E and G with the adapted cycle
consistency loss by minimizing the L2 norm of the difference
between the original and the reconstructed samples:

VL2(E ,G) = Ex⇠PX [kx� G(E(x))k2] (5)

Considering that our target is anomaly detection, we use the L2
norm instead of L1 norm (the one used by Zhu et al. [32] for
image translation) to emphasize the impacts of anomalous val-
ues. In our preliminary experiments, we observed that adding
the backward consistency loss (i.e., Ez⇠Pz [kz � E(G(z))k2])
did not improve performance.

C. Full Objective
Combining all of the objectives given in (3),(4) and (5) leads

to the final MinMax problem:

min
{E,G}

max
{Cx2Cx,Cz2Cz}

VX(Cx,G)+VZ(Cz, E)+VL2(E ,G) (6)

The full architecture of our model can be seen in Figure
2. The benefits of this architecture with respect to anomaly
detection are twofold. First, we have a Critic Cx that is
trained to distinguish between real and fake time series se-
quences, hence the score of the Critic can directly serve as an
anomaly measure. Second, the two Generators trained with
cycle consistency loss allow us to encode and decode a time
series sequence. The difference between the original sequence
and the decoded sequence can be used as a second anomaly
detection measure. For detailed training steps, please refer to
the pseudo code (cf. line 1–14). The following section will
introduce the details of using TadGAN for anomaly detection.

V. TIME-SERIES GAN FOR ANOMALY DETECTION
(TADGAN)

Let us assume that the given time series is X =
(x1, x2, · · · , xT), where xi 2 RM⇥1 indicates M types of
measurements at time step i. For simplicity, we use M = 1

GATEMPTING
tofourex
BYtransformno
someone

simiansto

o

Algorithm 1: TadGAN
Require: m, batch size.

epoch, number of iterations over the data.
ncritic, number of iterations of the critic per

epoch.
⌘, step size.

1 for each epoch do
2 for  = 0, . . . , ncritic do
3 Sample {(x1...t

i)}mi=1 from real data.
4 Sample {(z1...ki)}mi=1 from random.
5 gwCx

= rwCx
[1m

Pm
i=1 Cx(xi)�

1
m

Pm
i=1 Cx(G(zi)) + gp(xi,G(zi))]

6 wCx = wCx + ⌘ · adam(wCx , gwCx
)

7 gwCz
= rwCz

[1m
Pm

i=1 Cz(zi)�
1
m

Pm
i=1 Cz(E(xi)) + gp(zi, E(xi))]

8 wCz = wCz + ⌘ · adam(wCz , gwCz
)

9 end
10 Sample {(x1...t

i)}mi=1 from real data.
11 Sample {(z1...ki)}mi=1 from random.
12 gwG,E = rwG ,wE [

1
m

Pm
i=1 Cx(xi)�

1
m

Pm
i=1 Cx(G(zi)) +

1
m

Pm
i=1 Cz(zi)�

1
m

Pm
i=1 Cz(E(xi)) +

1
m

Pm
i=1 kxi �

G(E(xi))k2]
13 wG,E ,= wG,E + ⌘ · adam(wG,E , gwG,E)
14 end
15 X = {(x1...t

i)}ni=1

16 for i = 1, . . . , n do
17 x̂i = G(E(xi));
18 RE(xi) = f(xi, x̂i);
19 score = ↵ZRE(xi) + (1� ↵)ZCx(x̂i)
20 end

in the later description. Therefore, X is now a univariate time
series and xi is a scalar. The same steps can be applied for
multivariate time series (i.e., when M > 1).

To obtain the training samples, we introduce a sliding
window with window size t and step size s to divide the
original time series into N sub-sequences X = {(x1...t

i)}Ni=1,
where N = T�t

s . In practice, it is difficult to know the ground
truth, and anomalous data points are rare. Hence, we assume
all the training sample points are normal. In addition, we
generate Z = {(z1...ki)}Ni=1 from a random space following
normal distribution, where k denotes the dimension of the
latent space. Then, we feed X and Z to our GAN model
and train it with the objective defined in (6). With the trained
model, we are able to compute anomaly scores (or likelihoods)
at every time step by leveraging the reconstruction error and
Critic output (cf. line 15–20).

A. Estimating Anomaly Scores using Reconstruction Errors

Given a sequence x1...t
i of length t (denoted as xi later),

TadGAN generates a reconstructed sequence of the same
length: xi ! E(xi) ! G(E(xi)) ⇡ x̂i. Therefore, for each
time point j, we have a collection of reconstructed values

{x̂q
i , i + q = j} We take the median from the collection as

the final reconstructed value x̂j . Note that in the preliminary
experiments, we found that using the median achieved a better
performance than using the mean. Now, the reconstructed time
series is (x̂1, x̂2, · · · , x̂T). Here we propose three different
types of functions (cf. line 18) for computing the reconstruc-
tion errors at each time step (assume the interval between
neighboring time steps is the same).
Point-wise difference. This is the most intuitive way to
define the reconstruction error, which computes the difference
between the true value and the reconstructed value at every
time step:

st =
��xt � x̂t

�� (7)

Area difference. This is applied over windows of a certain
length to measure the similarity between local regions. It is
defined as the average difference between the areas beneath
two curves of length l:

st =
1

2 ⇤ l

�����

Z t+l

t�l
xt � x̂t dx

����� (8)

Although this seems intuitive, it is not often used in this
context – however, we will show in our experiments that this
approach works well in many cases. Compared with the point-
wise difference, the area difference is good at identifying the
regions where small differences exist over a long period of
time. Since we are only given fixed samples of the functions,
we use the trapezoidal rule to calculate the definite integral in
the implementation.
Dynamic time warping (DTW). DTW aims to calculate the
optimal match between two given time sequences [42] and
is used to measure the similarity between local regions. We
have two time series X = (xt�1, xt�l+1, . . . , xt+l) and X̂ =
(x̂t�1, x̂t�l+1, . . . , x̂t+l) and let W 2 R2⇤l⇥2⇤l be a matrix
such that the (i, j)-th element is a distance measure between xi

and x̂j , denoted as wk. We want to find the warp path W ⇤ =
(w1, w2, . . . , wK) that defines the minimum distance between
the two curves, subject to boundary conditions at the start and
end, as well as constraints on continuity and monotonicity.
The DTW distance between time series X and X̂ is defined
as follows:

st = W ⇤ = DTW(X, X̂) = min
W

2

4 1

K

vuut
KX

k=1

wk

3

5 (9)

Similar to area difference, DTW is able to identify the regions
of small difference over a long period of time, but DTW can
handle time shift issues as well.

B. Estimating Anomaly Scores with Critic Outputs
During the training process, the Critic Cx has to distinguish

between real input sequences and synthetic ones. Because we
use the Wasserstein-1 distance when training Cx, the outputs
can be seen as an indicator of how real (larger value) or fake
(smaller value) a sequence is. Therefore, once the Critic is

I

NASA Yahoo S5 NAB

Property SMAP MSL A1 A2 A3 A4 Art AdEx AWS Traf Tweets

SIGNALS 53 27 67 100 100 100 6 5 17 7 10
ANOMALIES 67 36 178 200 939 835 6 11 30 14 33

point (len = 1) 0 0 68 33 935 833 0 0 0 0 0
collective (len > 1) 67 36 110 167 4 2 6 11 30 14 33

ANOMALY POINTS 54696 7766 1669 466 943 837 2418 795 6312 1560 15651
out-of-dist 18126 642 861 153 21 49 123 15 210 86 520

(% tot.) 33.1% 8.3% 51.6% 32.8% 2.2% 5.9% 5.1% 1.9% 3.3% 5.5% 3.3%
DATA POINTS 562800 132046 94866 142100 168000 168000 24192 7965 67644 15662 158511
IS SYNTHETIC? X X X X

TABLE III
DATASET SUMMARY: OVERALL THE BENCHMARK DATASET CONTAINS A TOTAL OF 492 SIGNALS AND 2349 ANOMALIES.

trained, it can directly serve as an anomaly measure for time
series sequences.

Similar to the reconstruction errors, at time step j, we have
a collection of Critic scores (cqi , i+ q = j). We apply kernel
density estimation (KDE) on the collection and then take the
maximum value as the smoothed value cj Now the Critic
score sequence is (c1, c2, . . . , cT). We show in our experiments
that it is indeed the case that the Critic assigns different
scores to anomalous regions compared to normal regions. This
allows for the use of thresholding techniques to identify the
anomalous regions.

C. Combining Both Scores
The reconstruction errors RE(x) and Critic outputs Cx(x)

cannot be directly used together as anomaly scores. Intuitively,
the larger RE(x) and the smaller Cx(x) indicate higher
anomaly scores. Therefore, we first compute the mean and
standard deviation of RE(x) and Cx(x), and then calculate
their respective z-scores ZRE(x) and ZCx(x) to normalize
both. Larger z-scores indicate high anomaly scores.

We have explored different ways to leverage ZRE(x) and
ZCx(x). As shown in Table V (row 1–4), we first tested three
types of ZRE(x) and ZCx(x) individually. We then explored
two different ways to combine them (row 5 to the last row).
First, we attempt to merge them into a single value a(x) with
a convex combination (cf. line 19) [7], [36]:

a(x) = ↵ZRE(x) + (1� ↵)ZCx(x) (10)

where ↵ controls the relative importance of the two terms (by
default alpha = 0.5). Second, we try to multiply both scores
to emphasize the high values:

a(x) = ↵ZRE(x)� ZCx(x) (11)

where ↵ = 1 by default. Both methods result in robust
anomaly scores. The results are reported in Section VI-C.

D. Identifying Anomalous Sequences
Finding anomalous sequences with locally adaptive thresh-
olding: Once we obtain anomaly scores at every time step,
thresholding techniques can be applied to identify anomalous

sequences. We use sliding windows to compute thresholds,
and empirically set the window size as T

3 and the step size
as T

3⇤10 . This is helpful to identify contextual anomalies
whose contextual information is usually unknown. The sliding
window size determines the number of historical anomaly
scores to evaluate the current threshold. For each sliding
window, we use a simple static threshold defined as 4 standard
deviations from the mean of the window. We can then identify
those points whose anomaly score is larger than the threshold
as anomalous. Thus, continuous time points compose into
anomalous sequences (or windows): {ai

seq, i = 1, 2, . . . ,K},
where ai

seq = (astart(i), . . . ,aend(i)) .
Mitigating false positives: The use of sliding windows can
increase recall of anomalies but may also produce many
false positives. We employ an anomaly pruning approach
inspired by Hundman et al. [6] to mitigate false positives.
At first, for each anomalous sequence, we use the maximum
anomaly score to represent it, obtaining a set of maximum
values {ai

max, i = 1, 2, . . . ,K}. Once these values are sorted
in descending order, we can compute the decrease percent
pi = (ai�1

max�ai
max)/a

i�1
max. When the first pi does not exceed

a certain threshold ✓ (by default ✓ = 0.1), we reclassify all
subsequent sequences (i.e., {aj

seq, i  j  K}) as normal.

VI. EXPERIMENTAL RESULTS

A. Datasets
To measure the performance of TadGAN, we evaluate it on

multiple time series datasets. In total, we have collected 11
datasets (a total of 492 signals) across a variety of application
domains. We use spacecraft telemetry signals provided by
NASA2, consisting of two datasets: Mars Science Laboratory
(MSL) and Soil Moisture Active Passive (SMAP). In addition,
we use Yahoo S5 which contains four different sub-datasets
3 The A1 dataset is based on real production traffic to Yahoo
computing systems, while A2, A3 and A4 are all synthetic
datasets. Lastly, we use Numenta Anomaly Benchmark

2Spacecraft telemetry data: https://s3-us-west-2.amazonaws.com/
telemanom/data.zip

3Yahoo S5 data can be requested here: https://webscope.sandbox.yahoo.
com/catalog.php?datatype=s&did=70

https://s3-us-west-2.amazonaws.com/telemanom/data.zip
https://s3-us-west-2.amazonaws.com/telemanom/data.zip
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

(NAB). NAB [43] includes multiple types of time series
data from various application domains4 We have picked five
datasets: Art, AdEx, AWS, Traf, and Tweets.

Datasets from different sources contain different numbers
of signals and anomalies, and locations of anomalies are
known for each signal. Basic information for each dataset is
summarized in Table III. For each dataset, we present the total
number of signals and the number of anomalies pertaining to
them. We also observe whether the anomalies in the dataset are
single “point” anomalies, or one or more collections. In order
to suss out the ease of anomaly identification, we measure how
out-of-the-ordinary each anomaly point is by categorizing it
as “out-of-dist” if it falls 4 standard deviations away from the
mean of all the data for a signal. As each dataset has some
quality that make detecting its anomalies more challenging,
this diverse selection will help us identify the effectiveness
and limitations of each baseline.

B. Experimental setup

1) Data preparation: For each dataset, we first normalize
the data betweeen [�1, 1]. Then we find a proper interval
over which to aggregate the data, such that we have several
thousands of equally spaced points in time for each signal.
We then set a window size t = 100 and step size s = 1 to
obtain training samples for TadGAN. Because many signals
in the Yahoo datasets contain linear trends, we apply a simple
detrending function (which subtracts the result of a linear least-
squares fit to the signal) before training and testing.

2) Architecture: In our experiments, inputs to TadGAN are
time series sequences of length 100 (domain X), and the
latent space (domain Z) is 20-dimensional. We use a 1-layer
bidirectional Long Short-Term Memory (LSTM) with 100
hidden units as Generator E , and a 2-layer bidirectional LSTM
with 64 hidden units each as Generator G, where dropout is
applied. We add a 1-D convolutional layer for both Critics,
with the intention of capturing local temporal features that can
determine how anomalous a sequence is. The model is trained
on a specific signal from one dataset for 2000 iterations, with
a batch size of 64.

3) Evaluation metrics: We measure the performance of
different methods using the commonly used metrics Precision,
Recall and F1-Score. In many real-world application scenarios,
anomalies are rare and usually window-based (i.e. a continuous
sequence of points—see Sec. V-D). From the perspective of
end-users, the best outcome is to receive timely true alarms
without too many false positives (FPs), as these may waste
time and resources. To penalize high FPs and reward the timely
true alarms, we present the following window-based rules:
(1) If a known anomalous window overlaps any predicted
windows, a TP is recorded. (2) If a known anomalous window
does not overlap any predicted windows, a FN is recorded. (3)
If a predicted window does not overlap any labeled anomalous
region, a FP is recorded. This method is also used in Hundman
et al’s work [6].

4NAB data: https://github.com/numenta/NAB/tree/master/data

4) Baselines: The baseline methods can be divided into
three categories: prediction-based methods, reconstruction-
based methods, and online commercial tools.
ARIMA (Prediction-based). An autoregressive integrated
moving average (ARIMA) model is a popular statistical anal-
ysis model that learns autocorrelations in the time series for
future value prediction. We use point-wise prediction errors as
the anomaly scores to detect anomalies.
HTM (Prediction-based). Hierarchial Temporal Memory
(HTM) [2] has shown better performance over many statistical
analysis models in the Numenta Anomaly Benchmark. It
encodes the current input to a hidden state and predicts the next
hidden state. Prediction errors are computed as the differences
between the predicted state and the true state, which are then
used as the anomaly scores for anomaly detection.
LSTM (Prediction-based). The neural network used in our
experiments consists of two LSTM layers with 80 units each,
and a subsequent dense layer with one unit which predicts
the value at the next time step (similar to the one used by
Hundman et al. [6]). Point-wise prediction errors are used for
anomaly detection.
AutoEncoder (Reconstruction-based). Our approach can
be viewed as a special instance of “adversarial autoen-
coders” [44], E � G :X ! X . Thus, we compare our method
with standard autoencoders with dense layers or LSTM lay-
ers [5]. The dense autoencoder consists of three dense layers
with 60, 20 and 60 units respectively. The LSTM autoencoder
contains two LSTM layers, each with 60 units. Again, a point-
wise reconstruction error is used to detect anomalies.
MAD-GAN (Reconstruction-based). This method [7] uses
a vanilla GAN along with an optimal instance searching
strategy in latent space to support multivariate time series
reconstruction. We use MAD-GAN to compute the anomaly
scores at every time step and then apply the same anomaly
detection method introduced in Sec. V-D to find anomalies.
Microsoft Azure Anomaly Detector (Commercial tool). Mi-
crosoft uses Spectral Residual Convolutional Neural Networks
(SR-CNN) in which the models are applied serially [8]. The
SR model is responsible for saliency detection, and the CNN is
responsible for learning a discriminating threshold. The output
of the model is a sequence of binary labels that is attributed
to each timestamp.
Amazon DeepAR (Commercial tool). DeepAR is a proba-
bilistic forecasting model with autoregressive recurrent net-
works [9]. We use this model in a similar manner to LSTM
in that it is a prediction-based approach. Anomaly scores are
presented as the regression errors which are computed as the
distance between the median of the predicted value and true
value.

C. Benchmarking Results
TadGAN outperformed all the baseline methods by

having the highest averaged F1 score (0.7) across all
the datasets. Table IV ranks all the methods based on their
averaged F1 scores (the last column) across the eleven datasets.
The second (LSTM, 0.623) and the third (Arima, 0.599) best

https://github.com/numenta/NAB/tree/master/data

NASA Yahoo S5 NAB

Baseline MSL SMAP A1 A2 A3 A4 Art AdEx AWS Traf Tweets Mean±SD
TadGAN 0.623 0.704 0.8 0.867 0.685 0.6 0.8 0.8 0.644 0.486 0.609 0.700±0.123
(P) LSTM 0.46 0.69 0.744 0.98 0.772 0.645 0.375 0.538 0.474 0.634 0.543 0.623±0.163
(P) Arima 0.492 0.42 0.726 0.836 0.815 0.703 0.353 0.583 0.518 0.571 0.567 0.599±0.148
(C) DeepAR 0.583 0.453 0.532 0.929 0.467 0.454 0.545 0.615 0.39 0.6 0.542 0.555±0.130
(R) LSTM AE 0.507 0.672 0.608 0.871 0.248 0.163 0.545 0.571 0.764 0.552 0.542 0.549±0.193
(P) HTM 0.412 0.557 0.588 0.662 0.325 0.287 0.455 0.519 0.571 0.474 0.526 0.489±0.108
(R) Dense AE 0.507 0.7 0.472 0.294 0.074 0.09 0.444 0.267 0.64 0.333 0.057 0.353±0.212
(R) MAD-GAN 0.111 0.128 0.37 0.439 0.589 0.464 0.324 0.297 0.273 0.412 0.444 0.35±0.137
(C) MS Azure 0.218 0.118 0.352 0.612 0.257 0.204 0.125 0.066 0.173 0.166 0.118 0.219±0.145

TABLE IV
F1-SCORES OF BASELINE MODELS USING WINDOW-BASED RULES. COLOR ENCODES THE PERFORMANCE OF THE F1 SCORE. ONE IS EVENLY DIVIDED

INTO 10 BINS, WITH EACH BIN ASSOCIATED WITH ONE COLOR. FROM DARK RED TO DARK BLUE, F1 SCORE INCREASES FROM 0 TO 1.

Fig. 3. Comparing average F1-Scores of baseline models across all datasets
to ARIMA. The x-axis represents the percentage of improvement over the
ARIMA score by each one of the baseline models.

are both prediction-based methods and TadGAN outperformed
them by 12.46% and 16.86%, respectively, compared to the
averaged F1 score.

Baseline models in comparison to Arima. Figure 3 depicts
the performance of all baseline models with respect to Arima.
It shows how much improvement in F1-Score is gained by
each model. The F1-Score presented is the average across the
eleven datasets. TadGAN achieves the best overall improve-
ment with an over 15% improvement in score, followed by
LSTM with a little over 4% improvement. It’s worth noting
that all the remaining models struggle to beat Arima.

Synthetic data v.s. real-world datasets. Although
TadGAN outperforms all baselines on average, we note that it
ranks below Arima when detecting anomalies within synthetic
dataset with point anomalies. Specifically, TadGAN achieved
an average of 0.717 while Arima scored an average of 0.784.
However, TadGAN still produces competitive results in both
scenarios.

How well do AutoEncoders perform? To view the supe-
riority of GAN, we compare it to other reconstruction-based
method such as LSTM AE, and Dense AE. One striking result
is that the autoencoder alone does not perform well on point
anomalies. We observe this as LSTM, AE, and Dense AE
obtained an average F1 Score on A3 and A4 of 0.205 and
0.082 respectively, while TadGAN and MAD-GAN achieved
a higher score of 0.643 and 0.527 respectively. One potential
reason could be that AutoEncoders are optimizing L2 function
and strictly attempt to fit the data, resulting in that anomalies
get fitted as well. However, adversarial learning does not have
this type of issue.

TadGAN v.s. MadGAN. Overall, TadGAN (0.7) outper-
formed Mad-GAN (0.219) significantly. This fully demon-
strates the usage of forward cycle-consistency loss (Eq. 5)
which prevents the contradiction between two Generators E
and G and paves the most direct way to the optimal zi
that corresponds to the testing sample xi. Mad-GAN uses
only vanilla GAN and does not include any regularization
mechanisms to guarantee the mapping route xi ! zi ! x̂i.
Their approach to finding the optimal zi is that they first
sample a random z from the latent space and then optimize it
with the gradient descent algorithm by optimizing the anomaly
detection loss.

D. Ablation Study
We evaluated multiple variations of TadGAN, using differ-

ent anomaly score computation methods for each (Sec. V-C).
The results are summarized in Table V. Here we report some
noteworthy insights.

Using Critic alone is unstable, because it has the lowest
average F1 score (0.29) and the highest standard deviation
(0.237). While only using Critic can achieve a good perfor-
mance in some datasets, such as SMAP and Art, its perfor-
mance may also be unexpectedly bad, such as in A2, A3, A4,
AdEx, and Traf. No clear shared characteristics are identified
among these five datasets (see Table III). For example, some
datasets contain only collective anomalies (Traf, AdEx), while
other datasets, like A3 and A4, have point anomalies as the
majority types. One explanation could be that Critic’s behavior

NASA Yahoo S5 NAB

Variation MSL SMAP A1 A2 A3 A4 Art AdEx AWS Traf Tweets Mean+SD
Critic 0.393 0.672 0.285 0.118 0.008 0.024 0.625 0 0.35 0.167 0.548 0.290±0.237
Point 0.585 0.588 0.674 0.758 0.628 0.6 0.588 0.611 0.551 0.383 0.571 0.594±0.086
Area 0.525 0.655 0.681 0.82 0.567 0.523 0.625 0.645 0.59 0.435 0.559 0.602±0.096
DTW 0.514 0.581 0.697 0.794 0.613 0.547 0.714 0.69 0.633 0.455 0.559 0.618±0.095
Critic⇥Point 0.619 0.675 0.703 0.75 0.685 0.536 0.588 0.579 0.576 0.4 0.59 0.609±0.091
Critic+Point 0.529 0.653 0.8 0.78 0.571 0.44 0.625 0.595 0.644 0.439 0.592 0.606±0.111
Critic⇥Area 0.578 0.704 0.719 0.867 0.587 0.46 0.8 0.6 0.6 0.4 0.571 0.625±0.131
Critic+Area 0.493 0.692 0.789 0.847 0.483 0.367 0.75 0.75 0.607 0.474 0.6 0.623±0.148
Critic⇥DTW 0.623 0.68 0.667 0.82 0.631 0.497 0.667 0.667 0.61 0.455 0.605 0.629±0.091
Critic+DTW 0.462 0.658 0.735 0.857 0.523 0.388 0.667 0.8 0.632 0.486 0.609 0.620±0.139
Mean 0.532 0.655 0.675 0.741 0.529 0.438 0.664 0.593 0.579 0.409 0.580
SD 0.068 0.039 0.137 0.211 0.182 0.154 0.067 0.209 0.081 0.087 0.02

TABLE V
F1-SCORES OF ALL THE VARIATIONS OF OUR MODEL.

is unpredictable when confronted with anomalies (x ⌧ PX),
because it is only taught to distinguish real time segments
(x ⇠ PX) from generated ones.

DTW outperforms the other two reconstruction error
types slightly. Among all variations, Critic⇥DTW has the best
score (0.629). Further, its standard deviation is smaller than
most of the other variations except for Point, indicating that
this combination is more stable than others. Therefore, this
combination should be the safe choice when encountering new
datasets without labels.

Combining Critic outputs and reconstruction errors does
improve performance in most cases. In all datasets except
A4, combinations achieve the best performance. Let us take
the MSL dataset as an example. We observe that when using
DTW alone, the F1 score is 0.514. Combining this with the
Critic score, we obtain a score of 0.623, despite the fact that
the F1 score when using Critic alone is 0.393. In addition, we
find that after combining the Critic scores, the averaged F1
score improves for each of the individual reconstruction error
computation methods. However, one interesting pattern is that
for dataset A4, which consists mostly of point anomalies, using
only point-wise errors achieve the best performance.

Multiplication is a better option than convex combina-
tion. Multiplication consistently leads to a higher averaged
F1 score than convex combination does when using the same
reconstruction error type (e.g., Critic⇥Point v.s. Critic+Point).
Multiplication also has consistently smaller standard devia-
tions. Thus, multiplication is the recommended way to com-
bine reconstruction scores and Critic scores. This can be
explained by the fact that multiplication can better amplify
high anomaly scores.

E. Limitations and Discussion

Here we compare our approach to one well-known GAN-
based anomaly detection method [7]. However, there are many
other GAN architectures tailored for time series reconstruction,

such as Time-Series GAN [14]. Due to our modular design,
any reconstruction-based algorithm of time series can employ
our anomaly scoring method for time series anomaly detection.
In the future, we plan to investigate various strategies for time
series reconstruction and compare their performances to the
current state-of-the-art. Moreover, it is worth understanding
how better signal reconstruction affects the performance of
anomaly detection. In fact, it is expected that better reconstruc-
tion might overfit to anomalies. Therefore, further experiments
are required to understand the relationship between reconstruc-
tion and detecting anomalies.

VII. CONCLUSION

In this paper, we presented a novel framework, TadGAN ,
that allows for time series reconstruction and effective anomaly
detection, showing how GANs can be effectively used for
anomaly detection in time series data. We explored point-
wise and window-based methods to compute reconstruction
errors. We further proposed two different ways to combine
reconstruction errors and Critic outputs to obtain anomaly
scores at every time step. We have also tested several anomaly-
scoring techniques and reported the best-suited one in this
work. Our experimental results showed that (1) TadGAN out-
performed all the baseline methods by having the highest
averaged F1 score across all the datasets, and showed superior
performance over baseline methods in 6 out of 11 datasets; (2)
window-based reconstruction errors outperformed the point-
wise method; and (3) the combination of both reconstruction
errors and critic outputs offers more robust anomaly scores,
which help to reduce the number of false positives as well
as increase the number of true positives. Finally, our code is
open source and is available as a tool for benchmarking time
series datasets for anomaly detection.

VIII. ACKNOWLEDGEMENT

The authors are grateful to SES S.A. of Betzdorf, Lux-
embourg, for their financial and non financial support in this

work. Dr. Cuesta-Infante is funded by the Spanish Government
research fundings RTI2018-098743-B-I00 (MICINN/FEDER)
and Y2018/EMT-5062 (Comunidad de Madrid). Alnegheimish
is supported by King Abdulaziz City for Science and Tech-
nology (KACST).

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[2] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134–147, 2017.

[3] D. Zheng, F. Li, and T. Zhao, “Self-adaptive statistical process control
for anomaly detection in time series,” Expert Systems with Applications,
vol. 57, pp. 324–336, 2016.

[4] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[5] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “LSTM-based encoder-decoder for multi-sensor anomaly
detection,” in Anomaly Detection Workshop at 33rd ICML, 2016.

[6] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting Spacecraft Anomalies Using LSTMs and Nonpara-
metric Dynamic Thresholding,” in Proc. of the 24th ACM SIGKDD,
2018.

[7] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “Mad-gan:
Multivariate anomaly detection for time series data with generative
adversarial networks,” in International Conference on Artificial Neural
Networks. Springer, 2019, pp. 703–716.

[8] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proc. of the 25th ACM SIGKDD, 2019, pp. 3009–3017.

[9] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar:
Probabilistic forecasting with autoregressive recurrent networks,” Inter-
national Journal of Forecasting, 2019.

[10] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey
of deep learning-based network anomaly detection,” Cluster Computing,
vol. 22, pp. 949–961, 2017.

[11] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term
Memory Networks for Anomaly Detection in Time Series,” in European
Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, 2015.

[12] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in
cyber physical systems using recurrent neural networks,” in IEEE
18th International Symposium on High Assurance Systems Engineering
(HASE), 2017, pp. 140–145.

[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
in Proc. of Advances in neural information processing systems, 2014,
pp. 2672–2680.

[14] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative
adversarial networks,” in Proc. of Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2019, pp. 5509–5519.

[15] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[16] J. Qiu, Q. Du, and C. Qian, “Kpi-tsad: A time-series anomaly detector
for kpi monitoring in cloud applications,” Symmetry, vol. 11, no. 11, p.
1350, 2019.

[17] P. De Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic classification of
heartbeats using ecg morphology and heartbeat interval features,” IEEE
transactions on biomedical engineering, vol. 51, no. 7, pp. 1196–1206,
2004.

[18] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial intelligence review, vol. 22, no. 2, pp. 85–126, 2004.

[19] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data,” PLOS ONE, vol. 11,
no. 4, pp. 1–31, 04 2016.

[20] R. A. A. Habeeb, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed,
and M. Imran, “Real-time big data processing for anomaly detection: A
survey,” International Journal of Information Management, vol. 45, pp.
289–307, 2019.

[21] J.-A. Martı́nez-Heras and A. Donati, “Enhanced Telemetry Monitoring
with Novelty Detection,” AI Magazine, vol. 35, no. 4, p. 37, 2014.

[22] D. Decoste, “Automated Learning and Monitoring of Limit Functions,”
in International Symposium on Artificial Intelligence, Robotics, and
Automation in Space, 1997.

[23] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proc. of the ACM SIGMOD, 2000, pp.
93–104.

[24] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional
spaces,” in European Conference on Principles of Data Mining and
Knowledge Discovery. Springer, 2002, pp. 15–27.

[25] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,”
Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1641–1650, 2003.

[26] E. H. Pena, M. V. de Assis, and M. L. Proença, “Anomaly detection
using forecasting methods arima and hwds,” in International Conference
of the Chilean Computer Science Society (SCCC), 2013, pp. 63–66.

[27] J. M. Torres, P. G. Nieto, L. Alejano, and A. Reyes, “Detection
of outliers in gas emissions from urban areas using functional data
analysis,” Journal of hazardous materials, vol. 186, no. 1, pp. 144–149,
2011.

[28] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of pca for
traffic anomaly detection,” in Proc. of the 2007 ACM SIGMETRICS,
2007, pp. 109–120.

[29] X. Dai and Z. Gao, “From model, signal to knowledge: A data-driven
perspective of fault detection and diagnosis,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 4, pp. 2226–2238, 2013.

[30] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
2015.

[31] B. Zhou, S. Liu, B. Hooi, X. Cheng, and J. Ye, “BeatGAN: Anomalous
Rhythm Detection using Adversarially Generated Time Series,” in Proc.
of the 28th Int. Joint Conf. on Artificial Intelligence, (IJCAI), 2019, pp.
4433–4439.

[32] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks,” in IEEE Int.
Conf. on Computer Vision (ICCV), oct 2017, pp. 2242–2251.

[33] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with
scene dynamics,” in Proc. of Advances in neural information processing
systems, 2016, pp. 613–621.

[34] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-
Erfurth, “f-AnoGAN: Fast unsupervised anomaly detection with gener-
ative adversarial networks,” Medical Image Analysis, vol. 54, pp. 30 –
44, 2019.

[35] L. Deecke, R. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft,
“Anomaly detection with generative adversarial networks,” 2018.
[Online]. Available: https://openreview.net/forum?id=S1EfylZ0Z

[36] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs, “Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery,” in International Conference on
Information Processing in Medical Imaging. Springer, 2017, pp. 146–
157.

[37] H. Zenati, M. Romain, C.-S. Foo, B. Lecouat, and V. Chandrasekhar,
“Adversarially Learned Anomaly Detection,” in IEEE ICDM, nov 2018,
pp. 727–736.

[38] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial Feature Learn-
ing,” in IEEE ICLR, 2017.

[39] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Ar-
jovsky, and A. Courville, “Adversarially Learned Inference,” in IEEE
ICLR, 2017.

[40] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. of the 34th ICML, 2017, pp. 214–223.

[41] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved Training of Wasserstein GANs,” in Proc. of the 31st Int.
Conf. on Neural Information Processing Systems, 2017, pp. 5769–5779.

[42] D. J. Bemdt and J. Clifford, “Using Dynamic Time Warping to Find
Patterns in Time Series,” in AAAI Workshop on Knowledge Discovery
in Databases, Seattle, Washington, 1994.

[43] A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection
algorithms–the numenta anomaly benchmark,” in Proc. of IEEE ICMLA,
2015, pp. 38–44.

[44] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial
autoencoders,” in Proc. of ICLR, Workshop Track, 2016.

https://openreview.net/forum?id=S1EfylZ0Z

Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu⇤ Taesung Park⇤ Phillip Isola Alexei A. Efros
Berkeley AI Research (BAIR) laboratory, UC Berkeley

Zebras Horses

horse zebra

zebra horse

Summer Winter

summer winter

winter summer

Photograph Van Gogh CezanneMonet Ukiyo-e

Monet Photos

Monet photo

photo Monet

Figure 1: Given any two unordered image collections X and Y , our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Abstract
Image-to-image translation is a class of vision and

graphics problems where the goal is to learn the mapping
between an input image and an output image using a train-
ing set of aligned image pairs. However, for many tasks,
paired training data will not be available. We present an
approach for learning to translate an image from a source
domain X to a target domain Y in the absence of paired
examples. Our goal is to learn a mapping G : X ! Y
such that the distribution of images from G(X) is indistin-
guishable from the distribution Y using an adversarial loss.
Because this mapping is highly under-constrained, we cou-
ple it with an inverse mapping F : Y ! X and introduce a
cycle consistency loss to enforce F (G(X)) ⇡ X (and vice
versa). Qualitative results are presented on several tasks
where paired training data does not exist, including collec-
tion style transfer, object transfiguration, season transfer,
photo enhancement, etc. Quantitative comparisons against
several prior methods demonstrate the superiority of our
approach.

1. Introduction
What did Claude Monet see as he placed his easel by the

bank of the Seine near Argenteuil on a lovely spring day
in 1873 (Figure 1, top-left)? A color photograph, had it
been invented, may have documented a crisp blue sky and
a glassy river reflecting it. Monet conveyed his impression
of this same scene through wispy brush strokes and a bright
palette.

What if Monet had happened upon the little harbor in
Cassis on a cool summer evening (Figure 1, bottom-left)?
A brief stroll through a gallery of Monet paintings makes it
possible to imagine how he would have rendered the scene:
perhaps in pastel shades, with abrupt dabs of paint, and a
somewhat flattened dynamic range.

We can imagine all this despite never having seen a side
by side example of a Monet painting next to a photo of the
scene he painted. Instead, we have knowledge of the set of
Monet paintings and of the set of landscape photographs.
We can reason about the stylistic differences between these

* indicates equal contribution

1

ar
X

iv
:1

70
3.

10
59

3v
7

 [c
s.C

V
]

24
 A

ug
 2

02
0

⋯ ⋯⋯

Paired Unpaired

Figure 2: Paired training data (left) consists of training ex-
amples {xi, yi}N

i=1, where the correspondence between xi

and yi exists [22]. We instead consider unpaired training
data (right), consisting of a source set {xi}N

i=1 (xi 2 X)
and a target set {yj}M

j=1 (yj 2 Y), with no information pro-
vided as to which xi matches which yj .

two sets, and thereby imagine what a scene might look like
if we were to “translate” it from one set into the other.

In this paper, we present a method that can learn to do the
same: capturing special characteristics of one image col-
lection and figuring out how these characteristics could be
translated into the other image collection, all in the absence
of any paired training examples.

This problem can be more broadly described as image-
to-image translation [22], converting an image from one
representation of a given scene, x, to another, y, e.g.,
grayscale to color, image to semantic labels, edge-map to
photograph. Years of research in computer vision, image
processing, computational photography, and graphics have
produced powerful translation systems in the supervised
setting, where example image pairs {xi, yi}N

i=1 are avail-
able (Figure 2, left), e.g., [11, 19, 22, 23, 28, 33, 45, 56, 58,
62]. However, obtaining paired training data can be difficult
and expensive. For example, only a couple of datasets ex-
ist for tasks like semantic segmentation (e.g., [4]), and they
are relatively small. Obtaining input-output pairs for graph-
ics tasks like artistic stylization can be even more difficult
since the desired output is highly complex, typically requir-
ing artistic authoring. For many tasks, like object transfigu-
ration (e.g., zebra$horse, Figure 1 top-middle), the desired
output is not even well-defined.

We therefore seek an algorithm that can learn to trans-
late between domains without paired input-output examples
(Figure 2, right). We assume there is some underlying rela-
tionship between the domains – for example, that they are
two different renderings of the same underlying scene – and
seek to learn that relationship. Although we lack supervi-
sion in the form of paired examples, we can exploit super-
vision at the level of sets: we are given one set of images in
domain X and a different set in domain Y . We may train

a mapping G : X ! Y such that the output ŷ = G(x),
x 2 X , is indistinguishable from images y 2 Y by an ad-
versary trained to classify ŷ apart from y. In theory, this ob-
jective can induce an output distribution over ŷ that matches
the empirical distribution pdata(y) (in general, this requires
G to be stochastic) [16]. The optimal G thereby translates
the domain X to a domain Ŷ distributed identically to Y .
However, such a translation does not guarantee that an in-
dividual input x and output y are paired up in a meaningful
way – there are infinitely many mappings G that will in-
duce the same distribution over ŷ. Moreover, in practice,
we have found it difficult to optimize the adversarial objec-
tive in isolation: standard procedures often lead to the well-
known problem of mode collapse, where all input images
map to the same output image and the optimization fails to
make progress [15].

These issues call for adding more structure to our ob-
jective. Therefore, we exploit the property that translation
should be “cycle consistent”, in the sense that if we trans-
late, e.g., a sentence from English to French, and then trans-
late it back from French to English, we should arrive back
at the original sentence [3]. Mathematically, if we have a
translator G : X ! Y and another translator F : Y ! X ,
then G and F should be inverses of each other, and both
mappings should be bijections. We apply this structural as-
sumption by training both the mapping G and F simultane-
ously, and adding a cycle consistency loss [64] that encour-
ages F (G(x)) ⇡ x and G(F (y)) ⇡ y. Combining this loss
with adversarial losses on domains X and Y yields our full
objective for unpaired image-to-image translation.

We apply our method to a wide range of applications,
including collection style transfer, object transfiguration,
season transfer and photo enhancement. We also compare
against previous approaches that rely either on hand-defined
factorizations of style and content, or on shared embed-
ding functions, and show that our method outperforms these
baselines. We provide both PyTorch and Torch implemen-
tations. Check out more results at our website.

2. Related work
Generative Adversarial Networks (GANs) [16, 63]

have achieved impressive results in image generation [6,
39], image editing [66], and representation learning [39, 43,
37]. Recent methods adopt the same idea for conditional
image generation applications, such as text2image [41], im-
age inpainting [38], and future prediction [36], as well as to
other domains like videos [54] and 3D data [57]. The key to
GANs’ success is the idea of an adversarial loss that forces
the generated images to be, in principle, indistinguishable
from real photos. This loss is particularly powerful for im-
age generation tasks, as this is exactly the objective that
much of computer graphics aims to optimize. We adopt an
adversarial loss to learn the mapping such that the translated

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/CycleGAN
https://junyanz.github.io/CycleGAN/

X Y

G

F

DYDX

G

F
Ŷ

X Y� X Y
�

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX

ŷx̂x y

Figure 3: (a) Our model contains two mapping functions G : X ! Y and F : Y ! X , and associated adversarial
discriminators DY and DX . DY encourages G to translate X into outputs indistinguishable from domain Y , and vice versa
for DX and F . To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: x ! G(x) ! F (G(x)) ⇡ x, and (c) backward cycle-consistency loss: y ! F (y) ! G(F (y)) ⇡ y

images cannot be distinguished from images in the target
domain.

Image-to-Image Translation The idea of image-to-
image translation goes back at least to Hertzmann et al.’s
Image Analogies [19], who employ a non-parametric tex-
ture model [10] on a single input-output training image pair.
More recent approaches use a dataset of input-output exam-
ples to learn a parametric translation function using CNNs
(e.g., [33]). Our approach builds on the “pix2pix” frame-
work of Isola et al. [22], which uses a conditional generative
adversarial network [16] to learn a mapping from input to
output images. Similar ideas have been applied to various
tasks such as generating photographs from sketches [44] or
from attribute and semantic layouts [25]. However, unlike
the above prior work, we learn the mapping without paired
training examples.

Unpaired Image-to-Image Translation Several other
methods also tackle the unpaired setting, where the goal is
to relate two data domains: X and Y . Rosales et al. [42]
propose a Bayesian framework that includes a prior based
on a patch-based Markov random field computed from a
source image and a likelihood term obtained from multiple
style images. More recently, CoGAN [32] and cross-modal
scene networks [1] use a weight-sharing strategy to learn a
common representation across domains. Concurrent to our
method, Liu et al. [31] extends the above framework with
a combination of variational autoencoders [27] and genera-
tive adversarial networks [16]. Another line of concurrent
work [46, 49, 2] encourages the input and output to share
specific “content” features even though they may differ in
“style“. These methods also use adversarial networks, with
additional terms to enforce the output to be close to the input
in a predefined metric space, such as class label space [2],
image pixel space [46], and image feature space [49].

Unlike the above approaches, our formulation does not
rely on any task-specific, predefined similarity function be-

tween the input and output, nor do we assume that the input
and output have to lie in the same low-dimensional embed-
ding space. This makes our method a general-purpose solu-
tion for many vision and graphics tasks. We directly com-
pare against several prior and contemporary approaches in
Section 5.1.

Cycle Consistency The idea of using transitivity as a
way to regularize structured data has a long history. In
visual tracking, enforcing simple forward-backward con-
sistency has been a standard trick for decades [24, 48].
In the language domain, verifying and improving transla-
tions via “back translation and reconciliation” is a technique
used by human translators [3] (including, humorously, by
Mark Twain [51]), as well as by machines [17]. More
recently, higher-order cycle consistency has been used in
structure from motion [61], 3D shape matching [21], co-
segmentation [55], dense semantic alignment [65, 64], and
depth estimation [14]. Of these, Zhou et al. [64] and Go-
dard et al. [14] are most similar to our work, as they use a
cycle consistency loss as a way of using transitivity to su-
pervise CNN training. In this work, we are introducing a
similar loss to push G and F to be consistent with each
other. Concurrent with our work, in these same proceed-
ings, Yi et al. [59] independently use a similar objective
for unpaired image-to-image translation, inspired by dual
learning in machine translation [17].

Neural Style Transfer [13, 23, 52, 12] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with
the style of another image (typically a painting) based on
matching the Gram matrix statistics of pre-trained deep fea-
tures. Our primary focus, on the other hand, is learning
the mapping between two image collections, rather than be-
tween two specific images, by trying to capture correspon-
dences between higher-level appearance structures. There-
fore, our method can be applied to other tasks, such as

painting! photo, object transfiguration, etc. where single
sample transfer methods do not perform well. We compare
these two methods in Section 5.2.

3. Formulation
Our goal is to learn mapping functions between two

domains X and Y given training samples {xi}N
i=1 where

xi 2 X and {yj}M
j=1 where yj 2 Y 1. We denote the data

distribution as x ⇠ pdata(x) and y ⇠ pdata(y). As illus-
trated in Figure 3 (a), our model includes two mappings
G : X ! Y and F : Y ! X . In addition, we in-
troduce two adversarial discriminators DX and DY , where
DX aims to distinguish between images {x} and translated
images {F (y)}; in the same way, DY aims to discriminate
between {y} and {G(x)}. Our objective contains two types
of terms: adversarial losses [16] for matching the distribu-
tion of generated images to the data distribution in the target
domain; and cycle consistency losses to prevent the learned
mappings G and F from contradicting each other.

3.1. Adversarial Loss
We apply adversarial losses [16] to both mapping func-

tions. For the mapping function G : X ! Y and its dis-
criminator DY , we express the objective as:

LGAN(G, DY , X, Y) = Ey⇠pdata(y)[log DY (y)]

+ Ex⇠pdata(x)[log(1 � DY (G(x))],
(1)

where G tries to generate images G(x) that look similar to
images from domain Y , while DY aims to distinguish be-
tween translated samples G(x) and real samples y. G aims
to minimize this objective against an adversary D that tries
to maximize it, i.e., minG maxDY LGAN(G, DY , X, Y).
We introduce a similar adversarial loss for the mapping
function F : Y ! X and its discriminator DX as well:
i.e., minF maxDX LGAN(F, DX , Y, X).

3.2. Cycle Consistency Loss
Adversarial training can, in theory, learn mappings G

and F that produce outputs identically distributed as target
domains Y and X respectively (strictly speaking, this re-
quires G and F to be stochastic functions) [15]. However,
with large enough capacity, a network can map the same
set of input images to any random permutation of images in
the target domain, where any of the learned mappings can
induce an output distribution that matches the target dis-
tribution. Thus, adversarial losses alone cannot guarantee
that the learned function can map an individual input xi to
a desired output yi. To further reduce the space of possi-
ble mapping functions, we argue that the learned mapping

1We often omit the subscript i and j for simplicity.

Input ! Output "(!) Reconstruction F(" !)

Figure 4: The input images x, output images G(x) and the
reconstructed images F (G(x)) from various experiments.
From top to bottom: photo$Cezanne, horses$zebras,
winter!summer Yosemite, aerial photos$Google maps.

functions should be cycle-consistent: as shown in Figure 3
(b), for each image x from domain X , the image translation
cycle should be able to bring x back to the original image,
i.e., x ! G(x) ! F (G(x)) ⇡ x. We call this forward cy-
cle consistency. Similarly, as illustrated in Figure 3 (c), for
each image y from domain Y , G and F should also satisfy
backward cycle consistency: y ! F (y) ! G(F (y)) ⇡ y.
We incentivize this behavior using a cycle consistency loss:

Lcyc(G, F) = Ex⇠pdata(x)[kF (G(x)) � xk1]
+ Ey⇠pdata(y)[kG(F (y)) � yk1]. (2)

In preliminary experiments, we also tried replacing the L1
norm in this loss with an adversarial loss between F (G(x))
and x, and between G(F (y)) and y, but did not observe
improved performance.

The behavior induced by the cycle consistency loss can
be observed in Figure 4: the reconstructed images F (G(x))
end up matching closely to the input images x.

3.3. Full Objective
Our full objective is:

L(G, F, DX , DY) =LGAN(G, DY , X, Y)

+ LGAN(F, DX , Y, X)

+ �Lcyc(G, F), (3)

where � controls the relative importance of the two objec-
tives. We aim to solve:

G⇤, F ⇤ = arg min
G,F

max
Dx,DY

L(G, F, DX , DY). (4)

Notice that our model can be viewed as training two “au-
toencoders” [20]: we learn one autoencoder F � G : X !
X jointly with another G�F : Y ! Y . However, these au-
toencoders each have special internal structures: they map
an image to itself via an intermediate representation that
is a translation of the image into another domain. Such a
setup can also be seen as a special case of “adversarial au-
toencoders” [34], which use an adversarial loss to train the
bottleneck layer of an autoencoder to match an arbitrary tar-
get distribution. In our case, the target distribution for the
X ! X autoencoder is that of the domain Y .

In Section 5.1.4, we compare our method against ab-
lations of the full objective, including the adversarial loss
LGAN alone and the cycle consistency loss Lcyc alone, and
empirically show that both objectives play critical roles
in arriving at high-quality results. We also evaluate our
method with only cycle loss in one direction and show that
a single cycle is not sufficient to regularize the training for
this under-constrained problem.

4. Implementation
Network Architecture We adopt the architecture for our
generative networks from Johnson et al. [23] who have
shown impressive results for neural style transfer and super-
resolution. This network contains three convolutions, sev-
eral residual blocks [18], two fractionally-strided convo-
lutions with stride 1

2 , and one convolution that maps fea-
tures to RGB. We use 6 blocks for 128 ⇥ 128 images and 9
blocks for 256⇥256 and higher-resolution training images.
Similar to Johnson et al. [23], we use instance normaliza-
tion [53]. For the discriminator networks we use 70 ⇥ 70
PatchGANs [22, 30, 29], which aim to classify whether
70 ⇥ 70 overlapping image patches are real or fake. Such a
patch-level discriminator architecture has fewer parameters
than a full-image discriminator and can work on arbitrarily-
sized images in a fully convolutional fashion [22].

Training details We apply two techniques from recent
works to stabilize our model training procedure. First,
for LGAN (Equation 1), we replace the negative log like-
lihood objective by a least-squares loss [35]. This loss is
more stable during training and generates higher quality
results. In particular, for a GAN loss LGAN(G, D, X, Y),
we train the G to minimize Ex⇠pdata(x)[(D(G(x)) � 1)2]
and train the D to minimize Ey⇠pdata(y)[(D(y) � 1)2] +
Ex⇠pdata(x)[D(G(x))2].

Second, to reduce model oscillation [15], we follow
Shrivastava et al.’s strategy [46] and update the discrimi-

nators using a history of generated images rather than the
ones produced by the latest generators. We keep an image
buffer that stores the 50 previously created images.

For all the experiments, we set � = 10 in Equation 3.
We use the Adam solver [26] with a batch size of 1. All
networks were trained from scratch with a learning rate of
0.0002. We keep the same learning rate for the first 100
epochs and linearly decay the rate to zero over the next 100
epochs. Please see the appendix (Section 7) for more details
about the datasets, architectures, and training procedures.

5. Results
We first compare our approach against recent methods

for unpaired image-to-image translation on paired datasets
where ground truth input-output pairs are available for eval-
uation. We then study the importance of both the adversar-
ial loss and the cycle consistency loss and compare our full
method against several variants. Finally, we demonstrate
the generality of our algorithm on a wide range of applica-
tions where paired data does not exist. For brevity, we refer
to our method as CycleGAN. The PyTorch and Torch code,
models, and full results can be found at our website.

5.1. Evaluation
Using the same evaluation datasets and metrics as

“pix2pix” [22], we compare our method against several
baselines both qualitatively and quantitatively. The tasks in-
clude semantic labels$photo on the Cityscapes dataset [4],
and map$aerial photo on data scraped from Google Maps.
We also perform ablation study on the full loss function.

5.1.1 Evaluation Metrics
AMT perceptual studies On the map$aerial photo

task, we run “real vs fake” perceptual studies on Amazon
Mechanical Turk (AMT) to assess the realism of our out-
puts. We follow the same perceptual study protocol from
Isola et al. [22], except we only gather data from 25 partic-
ipants per algorithm we tested. Participants were shown a
sequence of pairs of images, one a real photo or map and
one fake (generated by our algorithm or a baseline), and
asked to click on the image they thought was real. The first
10 trials of each session were practice and feedback was
given as to whether the participant’s response was correct
or incorrect. The remaining 40 trials were used to assess
the rate at which each algorithm fooled participants. Each
session only tested a single algorithm, and participants were
only allowed to complete a single session. The numbers we
report here are not directly comparable to those in [22] as
our ground truth images were processed slightly differently
2 and the participant pool we tested may be differently dis-

2We train all the models on 256 ⇥ 256 images while in pix2pix [22],
the model was trained on 256 ⇥ 256 patches of 512 ⇥ 512 images, and

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/CycleGAN
https://junyanz.github.io/CycleGAN/

Input BiGAN CoGAN feature loss GAN SimGAN CycleGAN pix2pix Ground truth

Figure 5: Different methods for mapping labels$photos trained on Cityscapes images. From left to right: input, Bi-
GAN/ALI [7, 9], CoGAN [32], feature loss + GAN, SimGAN [46], CycleGAN (ours), pix2pix [22] trained on paired data,
and ground truth.

Input BiGAN CoGAN feature loss GAN SimGAN CycleGAN pix2pix Ground truth

Figure 6: Different methods for mapping aerial photos$maps on Google Maps. From left to right: input, BiGAN/ALI [7, 9],
CoGAN [32], feature loss + GAN, SimGAN [46], CycleGAN (ours), pix2pix [22] trained on paired data, and ground truth.

tributed from those tested in [22] (due to running the exper-
iment at a different date and time). Therefore, our numbers
should only be used to compare our current method against
the baselines (which were run under identical conditions),
rather than against [22].

FCN score Although perceptual studies may be the gold
standard for assessing graphical realism, we also seek an
automatic quantitative measure that does not require human
experiments. For this, we adopt the “FCN score” from [22],
and use it to evaluate the Cityscapes labels!photo task.
The FCN metric evaluates how interpretable the generated
photos are according to an off-the-shelf semantic segmen-
tation algorithm (the fully-convolutional network, FCN,
from [33]). The FCN predicts a label map for a generated
photo. This label map can then be compared against the
input ground truth labels using standard semantic segmen-

run convolutionally on the 512 ⇥ 512 images at test time. We choose
256⇥ 256 in our experiments as many baselines cannot scale up to high-
resolution images, and CoGAN cannot be tested fully convolutionally.

tation metrics described below. The intuition is that if we
generate a photo from a label map of “car on the road”,
then we have succeeded if the FCN applied to the generated
photo detects “car on the road”.

Semantic segmentation metrics To evaluate the perfor-
mance of photo!labels, we use the standard metrics from
the Cityscapes benchmark [4], including per-pixel accuracy,
per-class accuracy, and mean class Intersection-Over-Union
(Class IOU) [4].

5.1.2 Baselines
CoGAN [32] This method learns one GAN generator for

domain X and one for domain Y , with tied weights on the
first few layers for shared latent representations. Translation
from X to Y can be achieved by finding a latent represen-
tation that generates image X and then rendering this latent
representation into style Y .

SimGAN [46] Like our method, Shrivastava et al.[46]
uses an adversarial loss to train a translation from X to Y .

Map ! Photo Photo ! Map
Loss % Turkers labeled real % Turkers labeled real
CoGAN [32] 0.6% ± 0.5% 0.9% ± 0.5%
BiGAN/ALI [9, 7] 2.1% ± 1.0% 1.9% ± 0.9%
SimGAN [46] 0.7% ± 0.5% 2.6% ± 1.1%
Feature loss + GAN 1.2% ± 0.6% 0.3% ± 0.2%
CycleGAN (ours) 26.8% ± 2.8% 23.2% ± 3.4%

Table 1: AMT “real vs fake” test on maps$aerial photos at
256 ⇥ 256 resolution.

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [32] 0.40 0.10 0.06
BiGAN/ALI [9, 7] 0.19 0.06 0.02
SimGAN [46] 0.20 0.10 0.04
Feature loss + GAN 0.06 0.04 0.01
CycleGAN (ours) 0.52 0.17 0.11
pix2pix [22] 0.71 0.25 0.18

Table 2: FCN-scores for different methods, evaluated on
Cityscapes labels!photo.

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [32] 0.45 0.11 0.08
BiGAN/ALI [9, 7] 0.41 0.13 0.07
SimGAN [46] 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16
pix2pix [22] 0.85 0.40 0.32

Table 3: Classification performance of photo!labels for
different methods on cityscapes.

The regularization term kx � G(x)k1 i s used to penalize
making large changes at pixel level.

Feature loss + GAN We also test a variant of Sim-
GAN [46] where the L1 loss is computed over deep
image features using a pretrained network (VGG-16
relu4 2 [47]), rather than over RGB pixel values. Com-
puting distances in deep feature space, like this, is also
sometimes referred to as using a “perceptual loss” [8, 23].

BiGAN/ALI [9, 7] Unconditional GANs [16] learn a
generator G : Z ! X , that maps a random noise z to an
image x. The BiGAN [9] and ALI [7] propose to also learn
the inverse mapping function F : X ! Z. Though they
were originally designed for mapping a latent vector z to an
image x, we implemented the same objective for mapping a
source image x to a target image y.

pix2pix [22] We also compare against pix2pix [22],
which is trained on paired data, to see how close we can
get to this “upper bound” without using any paired data.

For a fair comparison, we implement all the baselines
using the same architecture and details as our method, ex-
cept for CoGAN [32]. CoGAN builds on generators that
produce images from a shared latent representation, which
is incompatible with our image-to-image network. We use
the public implementation of CoGAN instead.

5.1.3 Comparison against baselines

As can be seen in Figure 5 and Figure 6, we were unable to
achieve compelling results with any of the baselines. Our

Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.22 0.07 0.02
GAN alone 0.51 0.11 0.08
GAN + forward cycle 0.55 0.18 0.12
GAN + backward cycle 0.39 0.14 0.06
CycleGAN (ours) 0.52 0.17 0.11

Table 4: Ablation study: FCN-scores for different variants
of our method, evaluated on Cityscapes labels!photo.

Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.10 0.05 0.02
GAN alone 0.53 0.11 0.07
GAN + forward cycle 0.49 0.11 0.07
GAN + backward cycle 0.01 0.06 0.01
CycleGAN (ours) 0.58 0.22 0.16

Table 5: Ablation study: classification performance of
photo!labels for different losses, evaluated on Cityscapes.

method, on the other hand, can produce translations that are
often of similar quality to the fully supervised pix2pix.

Table 1 reports performance regarding the AMT per-
ceptual realism task. Here, we see that our method can
fool participants on around a quarter of trials, in both the
maps!aerial photos direction and the aerial photos!maps
direction at 256⇥ 256 resolution3. All the baselines almost
never fooled participants.

Table 2 assesses the performance of the labels!photo
task on the Cityscapes and Table 3 evaluates the opposite
mapping (photos!labels). In both cases, our method again
outperforms the baselines.

5.1.4 Analysis of the loss function
In Table 4 and Table 5, we compare against ablations
of our full loss. Removing the GAN loss substantially
degrades results, as does removing the cycle-consistency
loss. We therefore conclude that both terms are critical
to our results. We also evaluate our method with the cy-
cle loss in only one direction: GAN + forward cycle loss
Ex⇠pdata(x)[kF (G(x))�xk1], or GAN + backward cycle loss
Ey⇠pdata(y)[kG(F (y))�yk1] (Equation 2) and find that it of-
ten incurs training instability and causes mode collapse, es-
pecially for the direction of the mapping that was removed.
Figure 7 shows several qualitative examples.

5.1.5 Image reconstruction quality
In Figure 4, we show a few random samples of the recon-
structed images F (G(x)). We observed that the recon-
structed images were often close to the original inputs x,
at both training and testing time, even in cases where one
domain represents significantly more diverse information,
such as map$aerial photos.

3We also train CycleGAN and pix2pix at 512 ⇥ 512 resolution, and
observe the comparable performance: maps!aerial photos: CycleGAN:
37.5% ± 3.6% and pix2pix: 33.9% ± 3.1%; aerial photos!maps: Cy-
cleGAN: 16.5%± 4.1% and pix2pix: 8.5%± 2.6%

https://github.com/mingyuliutw/CoGAN

Ground truthInput GAN aloneCycle alone GAN+forward GAN+backward CycleGAN

Figure 7: Different variants of our method for mapping labels$photos trained on cityscapes. From left to right: input, cycle-
consistency loss alone, adversarial loss alone, GAN + forward cycle-consistency loss (F (G(x)) ⇡ x), GAN + backward
cycle-consistency loss (G(F (y)) ⇡ y), CycleGAN (our full method), and ground truth. Both Cycle alone and GAN +
backward fail to produce images similar to the target domain. GAN alone and GAN + forward suffer from mode collapse,
producing identical label maps regardless of the input photo.

label → facade

facade → label

edges → shoes

shoes → edges

Input Output Input Output Input Output

Figure 8: Example results of CycleGAN on paired datasets
used in “pix2pix” [22] such as architectural labels$photos
and edges$shoes.

5.1.6 Additional results on paired datasets

Figure 8 shows some example results on other paired
datasets used in “pix2pix” [22], such as architectural
labels$photos from the CMP Facade Database [40], and
edges$shoes from the UT Zappos50K dataset [60]. The
image quality of our results is close to those produced by
the fully supervised pix2pix while our method learns the
mapping without paired supervision.

5.2. Applications
We demonstrate our method on several applications

where paired training data does not exist. Please refer to

the appendix (Section 7) for more details about the datasets.
We observe that translations on training data are often more
appealing than those on test data, and full results of all ap-
plications on both training and test data can be viewed on
our project website.

Collection style transfer (Figure 10 and Figure 11)
We train the model on landscape photographs downloaded
from Flickr and WikiArt. Unlike recent work on “neural
style transfer” [13], our method learns to mimic the style
of an entire collection of artworks, rather than transferring
the style of a single selected piece of art. Therefore, we
can learn to generate photos in the style of, e.g., Van Gogh,
rather than just in the style of Starry Night. The size of the
dataset for each artist/style was 526, 1073, 400, and 563 for
Cezanne, Monet, Van Gogh, and Ukiyo-e.

Object transfiguration (Figure 13) The model is
trained to translate one object class from ImageNet [5] to
another (each class contains around 1000 training images).
Turmukhambetov et al. [50] propose a subspace model to
translate one object into another object of the same category,
while our method focuses on object transfiguration between
two visually similar categories.

Season transfer (Figure 13) The model is trained on
854 winter photos and 1273 summer photos of Yosemite
downloaded from Flickr.

Photo generation from paintings (Figure 12) For
painting!photo, we find that it is helpful to introduce an
additional loss to encourage the mapping to preserve color
composition between the input and output. In particular, we
adopt the technique of Taigman et al. [49] and regularize the
generator to be near an identity mapping when real samples
of the target domain are provided as the input to the gen-
erator: i.e., Lidentity(G, F) = Ey⇠pdata(y)[kG(y) � yk1] +
Ex⇠pdata(x)[kF (x) � xk1].

https://junyanz.github.io/CycleGAN/

CycleGANInput CycleGAN+L"#$%&"&'

Figure 9: The effect of the identity mapping loss on Monet’s
painting! photos. From left to right: input paintings, Cy-
cleGAN without identity mapping loss, CycleGAN with
identity mapping loss. The identity mapping loss helps pre-
serve the color of the input paintings.

Without Lidentity, the generator G and F are free to
change the tint of input images when there is no need to.
For example, when learning the mapping between Monet’s
paintings and Flickr photographs, the generator often maps
paintings of daytime to photographs taken during sunset,
because such a mapping may be equally valid under the ad-
versarial loss and cycle consistency loss. The effect of this
identity mapping loss are shown in Figure 9.

In Figure 12, we show additional results translating
Monet’s paintings to photographs. This figure and Figure 9
show results on paintings that were included in the train-
ing set, whereas for all other experiments in the paper, we
only evaluate and show test set results. Because the training
set does not include paired data, coming up with a plausi-
ble translation for a training set painting is a nontrivial task.
Indeed, since Monet is no longer able to create new paint-
ings, generalization to unseen, “test set”, paintings is not a
pressing problem.

Photo enhancement (Figure 14) We show that our
method can be used to generate photos with shallower depth
of field. We train the model on flower photos downloaded
from Flickr. The source domain consists of flower photos
taken by smartphones, which usually have deep DoF due
to a small aperture. The target contains photos captured by
DSLRs with a larger aperture. Our model successfully gen-
erates photos with shallower depth of field from the photos
taken by smartphones.

Comparison with Gatys et al. [13] In Figure 15, we
compare our results with neural style transfer [13] on photo
stylization. For each row, we first use two representative
artworks as the style images for [13]. Our method, on the
other hand, can produce photos in the style of entire collec-
tion. To compare against neural style transfer of an entire

collection, we compute the average Gram Matrix across the
target domain and use this matrix to transfer the “average
style” with Gatys et al [13].

Figure 16 demonstrates similar comparisons for other
translation tasks. We observe that Gatys et al. [13] requires
finding target style images that closely match the desired
output, but still often fails to produce photorealistic results,
while our method succeeds to generate natural-looking re-
sults, similar to the target domain.

6. Limitations and Discussion
Although our method can achieve compelling results in

many cases, the results are far from uniformly positive. Fig-
ure 17 shows several typical failure cases. On translation
tasks that involve color and texture changes, as many of
those reported above, the method often succeeds. We have
also explored tasks that require geometric changes, with lit-
tle success. For example, on the task of dog!cat transfigu-
ration, the learned translation degenerates into making min-
imal changes to the input (Figure 17). This failure might be
caused by our generator architectures which are tailored for
good performance on the appearance changes. Handling
more varied and extreme transformations, especially geo-
metric changes, is an important problem for future work.

Some failure cases are caused by the distribution charac-
teristics of the training datasets. For example, our method
has got confused in the horse ! zebra example (Figure 17,
right), because our model was trained on the wild horse and
zebra synsets of ImageNet, which does not contain images
of a person riding a horse or zebra.

We also observe a lingering gap between the results
achievable with paired training data and those achieved by
our unpaired method. In some cases, this gap may be very
hard – or even impossible – to close: for example, our
method sometimes permutes the labels for tree and build-
ing in the output of the photos!labels task. Resolving this
ambiguity may require some form of weak semantic super-
vision. Integrating weak or semi-supervised data may lead
to substantially more powerful translators, still at a fraction
of the annotation cost of the fully-supervised systems.

Nonetheless, in many cases completely unpaired data is
plentifully available and should be made use of. This paper
pushes the boundaries of what is possible in this “unsuper-
vised” setting.

Acknowledgments: We thank Aaron Hertzmann, Shiry
Ginosar, Deepak Pathak, Bryan Russell, Eli Shechtman,
Richard Zhang, and Tinghui Zhou for many helpful com-
ments. This work was supported in part by NSF SMA-
1514512, NSF IIS-1633310, a Google Research Award, In-
tel Corp, and hardware donations from NVIDIA. JYZ is
supported by the Facebook Graduate Fellowship and TP is
supported by the Samsung Scholarship. The photographs
used for style transfer were taken by AE, mostly in France.

Ukiyo-eMonetInput Van Gogh Cezanne

Figure 10: Collection style transfer I: we transfer input images into the artistic styles of Monet, Van Gogh, Cezanne, and
Ukiyo-e. Please see our website for additional examples.

https://junyanz.github.io/CycleGAN/

Monet Ukiyo-eInput Van Gogh Cezanne

Figure 11: Collection style transfer II: we transfer input images into the artistic styles of Monet, Van Gogh, Cezanne, Ukiyo-e.
Please see our website for additional examples.

https://junyanz.github.io/CycleGAN/

Input Output Input Output

Figure 12: Relatively successful results on mapping Monet’s paintings to a photographic style. Please see our website for
additional examples.

https://junyanz.github.io/CycleGAN/

Input Input Input OutputOutputOutput

horse → zebra

zebra → horse

summer Yosemite → winter Yosemite

apple → orange

orange → apple

winter Yosemite → summer Yosemite

Figure 13: Our method applied to several translation problems. These images are selected as relatively successful results
– please see our website for more comprehensive and random results. In the top two rows, we show results on object
transfiguration between horses and zebras, trained on 939 images from the wild horse class and 1177 images from the zebra
class in Imagenet [5]. Also check out the horse!zebra demo video. The middle two rows show results on season transfer,
trained on winter and summer photos of Yosemite from Flickr. In the bottom two rows, we train our method on 996 apple
images and 1020 navel orange images from ImageNet.

https://junyanz.github.io/CycleGAN/
https://youtu.be/9reHvktowLY

Input Output Input Output Input Output Input Output

Figure 14: Photo enhancement: mapping from a set of smartphone snaps to professional DSLR photographs, the system often
learns to produce shallow focus. Here we show some of the most successful results in our test set – average performance is
considerably worse. Please see our website for more comprehensive and random examples.

Input Gatys et al. (image I) CycleGANGatys et al. (image II) Gatys et al. (collection)

Photo → Van Gogh

Photo → Ukiyo-e

Photo → Cezanne

Figure 15: We compare our method with neural style transfer [13] on photo stylization. Left to right: input image, results
from Gatys et al. [13] using two different representative artworks as style images, results from Gatys et al. [13] using the
entire collection of the artist, and CycleGAN (ours).

https://junyanz.github.io/CycleGAN/

Input Gatys et al. (image I) CycleGANGatys et al. (image II) Gatys et al. (collection)

apple → orange

horse → zebra

Monet → photo

Figure 16: We compare our method with neural style transfer [13] on various applications. From top to bottom:
apple!orange, horse!zebra, and Monet!photo. Left to right: input image, results from Gatys et al. [13] using two different
images as style images, results from Gatys et al. [13] using all the images from the target domain, and CycleGAN (ours).

Input Output Input Output

apple → orange zebra → horse

dog → cat cat → dog

winter → summer

Monet → photo

photo → Ukiyo-e photo → Van Gogh

Input Output

iPhone photo → DSLR photo

horse → zebra

ImageNet “wild horse” training images

Input Output

Figure 17: Typical failure cases of our method. Left: in the task of dog!cat transfiguration, CycleGAN can only make
minimal changes to the input. Right: CycleGAN also fails in this horse ! zebra example as our model has not seen images
of horseback riding during training. Please see our website for more comprehensive results.

https://junyanz.github.io/CycleGAN/

References
[1] Y. Aytar, L. Castrejon, C. Vondrick, H. Pirsiavash, and

A. Torralba. Cross-modal scene networks. PAMI,
2016. 3

[2] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and
D. Krishnan. Unsupervised pixel-level domain adap-
tation with generative adversarial networks. In CVPR,
2017. 3

[3] R. W. Brislin. Back-translation for cross-cultural
research. Journal of cross-cultural psychology,
1(3):185–216, 1970. 2, 3

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic urban
scene understanding. In CVPR, 2016. 2, 5, 6, 18

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In CVPR, 2009. 8, 13, 18

[6] E. L. Denton, S. Chintala, R. Fergus, et al. Deep gen-
erative image models using a laplacian pyramid of ad-
versarial networks. In NIPS, 2015. 2

[7] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial
feature learning. In ICLR, 2017. 6, 7

[8] A. Dosovitskiy and T. Brox. Generating images with
perceptual similarity metrics based on deep networks.
In NIPS, 2016. 7

[9] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Ar-
jovsky, O. Mastropietro, and A. Courville. Adversari-
ally learned inference. In ICLR, 2017. 6, 7

[10] A. A. Efros and T. K. Leung. Texture synthesis by
non-parametric sampling. In ICCV, 1999. 3

[11] D. Eigen and R. Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale
convolutional architecture. In ICCV, 2015. 2

[12] L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shecht-
man. Preserving color in neural artistic style transfer.
arXiv preprint arXiv:1606.05897, 2016. 3

[13] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style
transfer using convolutional neural networks. CVPR,
2016. 3, 8, 9, 14, 15

[14] C. Godard, O. Mac Aodha, and G. J. Brostow. Un-
supervised monocular depth estimation with left-right
consistency. In CVPR, 2017. 3

[15] I. Goodfellow. NIPS 2016 tutorial: Generative ad-
versarial networks. arXiv preprint arXiv:1701.00160,
2016. 2, 4, 5

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In NIPS, 2014. 2, 3,
4, 7

[17] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T. Liu, and
W.-Y. Ma. Dual learning for machine translation. In
NIPS, 2016. 3

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016. 5

[19] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and
D. H. Salesin. Image analogies. In SIGGRAPH, 2001.
2, 3

[20] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006. 5

[21] Q.-X. Huang and L. Guibas. Consistent shape maps
via semidefinite programming. In Symposium on Ge-
ometry Processing, 2013. 3

[22] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial net-
works. In CVPR, 2017. 2, 3, 5, 6, 7, 8, 18

[23] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses
for real-time style transfer and super-resolution. In
ECCV, 2016. 2, 3, 5, 7, 18

[24] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-
backward error: Automatic detection of tracking fail-
ures. In ICPR, 2010. 3

[25] L. Karacan, Z. Akata, A. Erdem, and E. Erdem.
Learning to generate images of outdoor scenes from
attributes and semantic layouts. arXiv preprint
arXiv:1612.00215, 2016. 3

[26] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015. 5

[27] D. P. Kingma and M. Welling. Auto-encoding varia-
tional bayes. ICLR, 2014. 3

[28] P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays.
Transient attributes for high-level understanding and
editing of outdoor scenes. ACM TOG, 33(4):149,
2014. 2

[29] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cun-
ningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In
CVPR, 2017. 5

[30] C. Li and M. Wand. Precomputed real-time texture
synthesis with markovian generative adversarial net-
works. ECCV, 2016. 5

[31] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised
image-to-image translation networks. In NIPS, 2017.
3

[32] M.-Y. Liu and O. Tuzel. Coupled generative adversar-
ial networks. In NIPS, 2016. 3, 6, 7

[33] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tional networks for semantic segmentation. In CVPR,
2015. 2, 3, 6

[34] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and
B. Frey. Adversarial autoencoders. In ICLR, 2016. 5

[35] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P.
Smolley. Least squares generative adversarial net-
works. In CVPR. IEEE, 2017. 5

[36] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-
scale video prediction beyond mean square error. In
ICLR, 2016. 2

[37] M. F. Mathieu, J. Zhao, A. Ramesh, P. Sprechmann,
and Y. LeCun. Disentangling factors of variation
in deep representation using adversarial training. In
NIPS, 2016. 2

[38] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and
A. A. Efros. Context encoders: Feature learning by
inpainting. CVPR, 2016. 2

[39] A. Radford, L. Metz, and S. Chintala. Unsupervised
representation learning with deep convolutional gen-
erative adversarial networks. In ICLR, 2016. 2

[40] R. Š. Radim Tyleček. Spatial pattern templates for
recognition of objects with regular structure. In Proc.
GCPR, Saarbrucken, Germany, 2013. 8, 18

[41] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele,
and H. Lee. Generative adversarial text to image syn-
thesis. In ICML, 2016. 2

[42] R. Rosales, K. Achan, and B. J. Frey. Unsupervised
image translation. In ICCV, 2003. 3

[43] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved techniques for
training GANs. In NIPS, 2016. 2

[44] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. Scrib-
bler: Controlling deep image synthesis with sketch
and color. In CVPR, 2017. 3

[45] Y. Shih, S. Paris, F. Durand, and W. T. Freeman. Data-
driven hallucination of different times of day from a
single outdoor photo. ACM TOG, 32(6):200, 2013. 2

[46] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind,
W. Wang, and R. Webb. Learning from simulated and
unsupervised images through adversarial training. In
CVPR, 2017. 3, 5, 6, 7

[47] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In
ICLR, 2015. 7

[48] N. Sundaram, T. Brox, and K. Keutzer. Dense point
trajectories by gpu-accelerated large displacement op-
tical flow. In ECCV, 2010. 3

[49] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised
cross-domain image generation. In ICLR, 2017. 3, 8

[50] D. Turmukhambetov, N. D. Campbell, S. J. Prince,
and J. Kautz. Modeling object appearance using
context-conditioned component analysis. In CVPR,
2015. 8

[51] M. Twain. The jumping frog: in english, then in
french, and then clawed back into a civilized language
once more by patient. Unremunerated Toil, 3, 1903. 3

[52] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempit-
sky. Texture networks: Feed-forward synthesis of tex-
tures and stylized images. In ICML, 2016. 3

[53] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance
normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 5

[54] C. Vondrick, H. Pirsiavash, and A. Torralba. Generat-
ing videos with scene dynamics. In NIPS, 2016. 2

[55] F. Wang, Q. Huang, and L. J. Guibas. Image co-
segmentation via consistent functional maps. In ICCV,
2013. 3

[56] X. Wang and A. Gupta. Generative image model-
ing using style and structure adversarial networks. In
ECCV, 2016. 2

[57] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenen-
baum. Learning a probabilistic latent space of ob-
ject shapes via 3d generative-adversarial modeling. In
NIPS, 2016. 2

[58] S. Xie and Z. Tu. Holistically-nested edge detection.
In ICCV, 2015. 2

[59] Z. Yi, H. Zhang, T. Gong, Tan, and M. Gong. Dual-
gan: Unsupervised dual learning for image-to-image
translation. In ICCV, 2017. 3

[60] A. Yu and K. Grauman. Fine-grained visual compar-
isons with local learning. In CVPR, 2014. 8, 18

[61] C. Zach, M. Klopschitz, and M. Pollefeys. Disam-
biguating visual relations using loop constraints. In
CVPR, 2010. 3

[62] R. Zhang, P. Isola, and A. A. Efros. Colorful image
colorization. In ECCV, 2016. 2

[63] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based
generative adversarial network. In ICLR, 2017. 2

[64] T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and
A. A. Efros. Learning dense correspondence via 3d-
guided cycle consistency. In CVPR, 2016. 2, 3

[65] T. Zhou, Y. J. Lee, S. Yu, and A. A. Efros. Flowweb:
Joint image set alignment by weaving consistent,
pixel-wise correspondences. In CVPR, 2015. 3

[66] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A.
Efros. Generative visual manipulation on the natural
image manifold. In ECCV, 2016. 2

7. Appendix
7.1. Training details

We train our networks from scratch, with a learning rate
of 0.0002. In practice, we divide the objective by 2 while
optimizing D, which slows down the rate at which D learns,
relative to the rate of G. We keep the same learning rate
for the first 100 epochs and linearly decay the rate to zero
over the next 100 epochs. Weights are initialized from a
Gaussian distribution N (0, 0.02).

Cityscapes label$Photo 2975 training images from the
Cityscapes training set [4] with image size 128 ⇥ 128. We
used the Cityscapes val set for testing.

Maps$aerial photograph 1096 training images were
scraped from Google Maps [22] with image size 256⇥256.
Images were sampled from in and around New York City.
Data was then split into train and test about the median lat-
itude of the sampling region (with a buffer region added to
ensure that no training pixel appeared in the test set).

Architectural facades labels$photo 400 training im-
ages from the CMP Facade Database [40].

Edges!shoes around 50, 000 training images from UT
Zappos50K dataset [60]. The model was trained for 5
epochs.

Horse$Zebra and Apple$Orange We downloaded
the images from ImageNet [5] using keywords wild horse,
zebra, apple, and navel orange. The images were scaled to
256 ⇥ 256 pixels. The training set size of each class: 939
(horse), 1177 (zebra), 996 (apple), and 1020 (orange).

Summer$Winter Yosemite The images were down-
loaded using Flickr API with the tag yosemite and the date-
taken field. Black-and-white photos were pruned. The im-
ages were scaled to 256 ⇥ 256 pixels. The training size of
each class: 1273 (summer) and 854 (winter).

Photo$Art for style transfer The art images were
downloaded from Wikiart.org. Some artworks that were
sketches or too obscene were pruned by hand. The pho-
tos were downloaded from Flickr using the combination
of tags landscape and landscapephotography. Black-and-
white photos were pruned. The images were scaled to
256 ⇥ 256 pixels. The training set size of each class
was 1074 (Monet), 584 (Cezanne), 401 (Van Gogh), 1433
(Ukiyo-e), and 6853 (Photographs). The Monet dataset was
particularly pruned to include only landscape paintings, and
the Van Gogh dataset included only his later works that rep-
resent his most recognizable artistic style.

Monet’s paintings!photos To achieve high resolution
while conserving memory, we used random square crops
of the original images for training. To generate results, we
passed images of width 512 pixels with correct aspect ra-
tio to the generator network as input. The weight for the
identity mapping loss was 0.5� where � was the weight for
cycle consistency loss. We set � = 10.

Flower photo enhancement Flower images taken on
smartphones were downloaded from Flickr by searching for
the photos taken by Apple iPhone 5, 5s, or 6, with search
text flower. DSLR images with shallow DoF were also
downloaded from Flickr by search tag flower, dof. The im-
ages were scaled to 360 pixels by width. The identity map-
ping loss of weight 0.5� was used. The training set size
of the smartphone and DSLR dataset were 1813 and 3326,
respectively. We set � = 10.

7.2. Network architectures
We provide both PyTorch and Torch implementations.
Generator architectures We adopt our architectures

from Johnson et al. [23]. We use 6 residual blocks for
128⇥ 128 training images, and 9 residual blocks for 256⇥
256 or higher-resolution training images. Below, we follow
the naming convention used in the Johnson et al.’s Github
repository.

Let c7s1-k denote a 7⇥7 Convolution-InstanceNorm-
ReLU layer with k filters and stride 1. dk denotes a 3 ⇥ 3
Convolution-InstanceNorm-ReLU layer with k filters and
stride 2. Reflection padding was used to reduce artifacts.
Rk denotes a residual block that contains two 3 ⇥ 3 con-
volutional layers with the same number of filters on both
layer. uk denotes a 3 ⇥ 3 fractional-strided-Convolution-
InstanceNorm-ReLU layer with k filters and stride 1

2 .
The network with 6 residual blocks consists of:

c7s1-64,d128,d256,R256,R256,R256,
R256,R256,R256,u128,u64,c7s1-3

The network with 9 residual blocks consists of:
c7s1-64,d128,d256,R256,R256,R256,
R256,R256,R256,R256,R256,R256,u128
u64,c7s1-3

Discriminator architectures For discriminator net-
works, we use 70 ⇥ 70 PatchGAN [22]. Let Ck denote a
4 ⇥ 4 Convolution-InstanceNorm-LeakyReLU layer with k
filters and stride 2. After the last layer, we apply a convo-
lution to produce a 1-dimensional output. We do not use
InstanceNorm for the first C64 layer. We use leaky ReLUs
with a slope of 0.2. The discriminator architecture is:
C64-C128-C256-C512

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/CycleGAN
https://github.com/jcjohnson/fast-neural-style

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie
⇤
, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair
†
, Aaron Courville, Yoshua Bengio

‡

Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to 1

2 everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 22]. These striking successes have
primarily been based on the backpropagation and dropout algorithms, using piecewise linear units
[19, 9, 10] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging
the benefits of piecewise linear units in the generative context. We propose a new generative model
estimation procedure that sidesteps these difficulties. 1

In the proposed adversarial nets framework, the generative model is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model distribution or the
data distribution. The generative model can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency. Competition in this game drives
both teams to improve their methods until the counterfeits are indistiguishable from the genuine
articles.

⇤Jean Pouget-Abadie is visiting Université de Montréal from Ecole Polytechnique.
†Sherjil Ozair is visiting Université de Montréal from Indian Institute of Technology Delhi
‡Yoshua Bengio is a CIFAR Senior Fellow.
1All code and hyperparameters available at http://www.github.com/goodfeli/adversarial

1

ar
X

iv
:1

40
6.

26
61

v1
 [

st
at

.M
L]

 1
0

Ju
n

20
14

This framework can yield specific training algorithms for many kinds of model and optimization
algorithm. In this article, we explore the special case when the generative model generates samples
by passing random noise through a multilayer perceptron, and the discriminative model is also a
multilayer perceptron. We refer to this special case as adversarial nets. In this case, we can train
both models using only the highly successful backpropagation and dropout algorithms [17] and
sample from the generative model using only forward propagation. No approximate inference or
Markov chains are necessary.

2 Related work

An alternative to directed graphical models with latent variables are undirected graphical models
with latent variables, such as restricted Boltzmann machines (RBMs) [27, 16], deep Boltzmann
machines (DBMs) [26] and their numerous variants. The interactions within such models are
represented as the product of unnormalized potential functions, normalized by a global summa-
tion/integration over all states of the random variables. This quantity (the partition function) and
its gradient are intractable for all but the most trivial instances, although they can be estimated by
Markov chain Monte Carlo (MCMC) methods. Mixing poses a significant problem for learning
algorithms that rely on MCMC [3, 5].

Deep belief networks (DBNs) [16] are hybrid models containing a single undirected layer and sev-
eral directed layers. While a fast approximate layer-wise training criterion exists, DBNs incur the
computational difficulties associated with both undirected and directed models.

Alternative criteria that do not approximate or bound the log-likelihood have also been proposed,
such as score matching [18] and noise-contrastive estimation (NCE) [13]. Both of these require the
learned probability density to be analytically specified up to a normalization constant. Note that
in many interesting generative models with several layers of latent variables (such as DBNs and
DBMs), it is not even possible to derive a tractable unnormalized probability density. Some models
such as denoising auto-encoders [30] and contractive autoencoders have learning rules very similar
to score matching applied to RBMs. In NCE, as in this work, a discriminative training criterion is
employed to fit a generative model. However, rather than fitting a separate discriminative model, the
generative model itself is used to discriminate generated data from samples a fixed noise distribution.
Because NCE uses a fixed noise distribution, learning slows dramatically after the model has learned
even an approximately correct distribution over a small subset of the observed variables.

Finally, some techniques do not involve defining a probability distribution explicitly, but rather train
a generative machine to draw samples from the desired distribution. This approach has the advantage
that such machines can be designed to be trained by back-propagation. Prominent recent work in this
area includes the generative stochastic network (GSN) framework [5], which extends generalized
denoising auto-encoders [4]: both can be seen as defining a parameterized Markov chain, i.e., one
learns the parameters of a machine that performs one step of a generative Markov chain. Compared
to GSNs, the adversarial nets framework does not require a Markov chain for sampling. Because
adversarial nets do not require feedback loops during generation, they are better able to leverage
piecewise linear units [19, 9, 10], which improve the performance of backpropagation but have
problems with unbounded activation when used ina feedback loop. More recent examples of training
a generative machine by back-propagating into it include recent work on auto-encoding variational
Bayes [20] and stochastic backpropagation [24].

3 Adversarial nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; ✓g), where G is a
differentiable function represented by a multilayer perceptron with parameters ✓g . We also define a
second multilayer perceptron D(x; ✓d) that outputs a single scalar. D(x) represents the probability
that x came from the data rather than pg . We train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train G to minimize
log(1�D(G(z))):

2

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.
Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

Z

x
pdata(x) log(D(x))dx+

Z

z
pz(z) log(1�D(g(z)))dz

=

Z

x
pdata(x) log(D(x)) + pg(x) log(1�D(x))dx (3)

For any (a, b) 2 R2 \ {0, 0}, the function y ! a log(y) + b log(1 � y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) [Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex⇠pdata [logD
⇤
G(x)] + Ez⇠pz [log(1�D⇤

G(G(z)))] (4)
=Ex⇠pdata [logD

⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

=Ex⇠pdata


log

pdata(x)

Pdata(x) + pg(x)

�
+ Ex⇠pg


log

pg(x)

pdata(x) + pg(x)

�

4

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
pg = pdata. At that point, C(G) achieves the value � log 4.

Proof. For pg = pdata, D⇤
G(x) =

1
2 , (consider Eq. 2). Hence, by inspecting Eq. 4 at D⇤

G(x) =
1
2 , we

find C(G) = log 1
2 + log 1

2 = � log 4. To see that this is the best possible value of C(G), reached
only for pg = pdata, observe that

Ex⇠pdata [� log 2] + Ex⇠pg [� log 2] = � log 4

and that by subtracting this expression from C(G) = V (D⇤
G, G), we obtain:

C(G) = � log(4) +KL

✓
pdata

����
pdata + pg

2

◆
+KL

✓
pg

����
pdata + pg

2

◆
(5)

where KL is the Kullback–Leibler divergence. We recognize in the previous expression the Jensen–
Shannon divergence between the model’s distribution and the data generating process:

C(G) = � log(4) + 2 · JSD (pdata kpg) (6)

Since the Jensen–Shannon divergence between two distributions is always non-negative and zero
only when they are equal, we have shown that C⇤ = � log(4) is the global minimum of C(G) and
that the only solution is pg = pdata, i.e., the generative model perfectly replicating the data generating
process.

4.2 Convergence of Algorithm 1

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ex⇠pdata [logD
⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

then pg converges to pdata

Proof. Consider V (G,D) = U(pg, D) as a function of pg as done in the above criterion. Note
that U(pg, D) is convex in pg . The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(x) =
sup↵2A f↵(x) and f↵(x) is convex in x for every ↵, then @f�(x) 2 @f if � = arg sup↵2A f↵(x).
This is equivalent to computing a gradient descent update for pg at the optimal D given the cor-
responding G. supD U(pg, D) is convex in pg with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of pg , pg converges to px, concluding the proof.

In practice, adversarial nets represent a limited family of pg distributions via the function G(z; ✓g),
and we optimize ✓g rather than pg itself. Using a multilayer perceptron to define G introduces
multiple critical points in parameter space. However, the excellent performance of multilayer per-
ceptrons in practice suggests that they are a reasonable model to use despite their lack of theoretical
guarantees.

5 Experiments

We trained adversarial nets an a range of datasets including MNIST[23], the Toronto Face Database
(TFD) [28], and CIFAR-10 [21]. The generator nets used a mixture of rectifier linear activations [19,
9] and sigmoid activations, while the discriminator net used maxout [10] activations. Dropout [17]
was applied in training the discriminator net. While our theoretical framework permits the use of
dropout and other noise at intermediate layers of the generator, we used noise as the input to only
the bottommost layer of the generator network.

We estimate probability of the test set data under pg by fitting a Gaussian Parzen window to the
samples generated with G and reporting the log-likelihood under this distribution. The � parameter

5

Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50
Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

6

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

Deep directed
graphical models

Deep undirected
graphical models

Generative
autoencoders Adversarial models

Training Inference needed
during training.

Inference needed
during training.
MCMC needed to
approximate
partition function
gradient.

Enforced tradeoff
between mixing
and power of
reconstruction
generation

Synchronizing the
discriminator with
the generator.
Helvetica.

Inference
Learned
approximate
inference

Variational
inference

MCMC-based
inference

Learned
approximate
inference

Sampling No difficulties Requires Markov
chain

Requires Markov
chain No difficulties

Evaluating p(x)
Intractable, may be
approximated with
AIS

Intractable, may be
approximated with
AIS

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Model design
Nearly all models
incur extreme
difficulty

Careful design
needed to ensure
multiple properties

Any differentiable
function is
theoretically
permitted

Any differentiable
function is
theoretically
permitted

Table 2: Challenges in generative modeling: a summary of the difficulties encountered by different approaches
to deep generative modeling for each of the major operations involving a model.

6 Advantages and disadvantages

This new framework comes with advantages and disadvantages relative to previous modeling frame-
works. The disadvantages are primarily that there is no explicit representation of pg(x), and that D
must be synchronized well with G during training (in particular, G must not be trained too much
without updating D, in order to avoid “the Helvetica scenario” in which G collapses too many values
of z to the same value of x to have enough diversity to model pdata), much as the negative chains of a
Boltzmann machine must be kept up to date between learning steps. The advantages are that Markov
chains are never needed, only backprop is used to obtain gradients, no inference is needed during
learning, and a wide variety of functions can be incorporated into the model. Table 2 summarizes
the comparison of generative adversarial nets with other generative modeling approaches.

The aforementioned advantages are primarily computational. Adversarial models may also gain
some statistical advantage from the generator network not being updated directly with data exam-
ples, but only with gradients flowing through the discriminator. This means that components of the
input are not copied directly into the generator’s parameters. Another advantage of adversarial net-
works is that they can represent very sharp, even degenerate distributions, while methods based on
Markov chains require that the distribution be somewhat blurry in order for the chains to be able to
mix between modes.

7 Conclusions and future work

This framework admits many straightforward extensions:

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

7

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [11].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by divising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

Acknowledgments

We would like to acknowledge Patrice Marcotte, Olivier Delalleau, Kyunghyun Cho, Guillaume
Alain and Jason Yosinski for helpful discussions. Yann Dauphin shared his Parzen window eval-
uation code with us. We would like to thank the developers of Pylearn2 [12] and Theano [7, 1],
particularly Frédéric Bastien who rushed a Theano feature specifically to benefit this project. Ar-
naud Bergeron provided much-needed support with LATEX typesetting. We would also like to thank
CIFAR, and Canada Research Chairs for funding, and Compute Canada, and Calcul Québec for
providing computational resources. Ian Goodfellow is supported by the 2013 Google Fellowship in
Deep Learning. Finally, we would like to thank Les Trois Brasseurs for stimulating our creativity.

References

[1] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and
Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop.

[2] Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers.
[3] Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013a). Better mixing via deep representations. In

ICML’13.
[4] Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013b). Generalized denoising auto-encoders as generative

models. In NIPS26. Nips Foundation.
[5] Bengio, Y., Thibodeau-Laufer, E., and Yosinski, J. (2014a). Deep generative stochastic networks trainable

by backprop. In ICML’14.
[6] Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014b). Deep generative stochastic net-

works trainable by backprop. In Proceedings of the 30th International Conference on Machine Learning
(ICML’14).

[7] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley,
D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy). Oral Presentation.

[8] Breuleux, O., Bengio, Y., and Vincent, P. (2011). Quickly generating representative samples from an
RBM-derived process. Neural Computation, 23(8), 2053–2073.

[9] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In AISTATS’2011.
[10] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013a). Maxout networks.

In ICML’2013.
[11] Goodfellow, I. J., Mirza, M., Courville, A., and Bengio, Y. (2013b). Multi-prediction deep Boltzmann

machines. In NIPS’2013.
[12] Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu, R., Bergstra,

J., Bastien, F., and Bengio, Y. (2013c). Pylearn2: a machine learning research library. arXiv preprint
arXiv:1308.4214.

[13] Gutmann, M. and Hyvarinen, A. (2010). Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In AISTATS’2010.

[14] Hinton, G., Deng, L., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T., and Kingsbury, B. (2012a). Deep neural networks for acoustic modeling in speech recognition.
IEEE Signal Processing Magazine, 29(6), 82–97.

[15] Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-sleep algorithm for unsupervised
neural networks. Science, 268, 1558–1161.

8

[16] Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

[17] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012b). Improving
neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580.

[18] Hyvärinen, A. (2005). Estimation of non-normalized statistical models using score matching. J. Machine
Learning Res., 6.

[19] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best multi-stage architecture
for object recognition? In Proc. International Conference on Computer Vision (ICCV’09), pages 2146–2153.
IEEE.

[20] Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

[21] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical
report, University of Toronto.

[22] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with deep convolutional
neural networks. In NIPS’2012.

[23] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

[24] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate
inference in deep generative models. Technical report, arXiv:1401.4082.

[25] Rifai, S., Bengio, Y., Dauphin, Y., and Vincent, P. (2012). A generative process for sampling contractive
auto-encoders. In ICML’12.

[26] Salakhutdinov, R. and Hinton, G. E. (2009). Deep Boltzmann machines. In AISTATS’2009, pages 448–
455.

[27] Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In
D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, chapter 6, pages
194–281. MIT Press, Cambridge.

[28] Susskind, J., Anderson, A., and Hinton, G. E. (2010). The Toronto face dataset. Technical Report UTML
TR 2010-001, U. Toronto.

[29] Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood
gradient. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ICML 2008, pages 1064–1071. ACM.

[30] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing robust
features with denoising autoencoders. In ICML 2008.

[31] Younes, L. (1999). On the convergence of Markovian stochastic algorithms with rapidly decreasing
ergodicity rates. Stochastics and Stochastic Reports, 65(3), 177–228.

9

